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Abstract. We present a novel approach for online learning of human
intentions in the context of navigation and show its advantage in human
tracking. The proposed approach assumes humans to be motivated to
navigate with a set of imaginary social forces and continuously learns
the preferences of each human to follow these forces. We conduct exper-
iments both in simulation and real-world environments to demonstrate
the feasibility of the approach and the benefit of employing it to track
humans. The results show the correlation between the learned intentions
and the actions taken by a human subject in controlled environments in
the context of human-robot interaction.
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1 Introduction

With recent developments in artificial intelligence and robotics, robots are
increasingly being assigned tasks where they have to navigate in crowded areas
[1–4]. While humans learn over the years to understand each other’s inten-
tions and plan their paths accordingly, robots still have difficulty understand-
ing human intentions, forcing them to navigate in an over conservative way in
human-populated environments.

Previous work on robot navigation within crowds mostly rely on the Social
Force Model (SFM) [5] to understand humans, where each is assumed to navigate
with a set of known imaginary social forces. Luber et al. [6] assumed fixed weights
for the social forces based on average human weight and dimensions and track
humans with the corresponding motion model. This approach might fail in the
real world where humans have different characteristics and might change their
intentions over time.

Ferrer et al. [7] proposed to control a robot with the Social Force Model
to navigate similar to humans by learning a fixed weight for each force from a
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dataset on human navigation. Although learning a fixed weight for each force
works for controlling a robot to navigate similar to humans, it might fail to track
multiple humans in the real world where each has different preferences for these
forces.

On the other hand, Vasquez et al. [8] used the social forces and other human
features to learn to navigate around humans using an Inverse Reinforcement
Learning framework [9] without the need to track humans.

Recently, Alahi et al. [10] suggested to use an LSTM-based neural network
to track humans with the network learning the connection between one human’s
position and another. While this approach is very promising, it is not obvious
how to extract human intentions from the end-to-end neural network.

In this work, we present Human Intention Tracking (HIT). HIT learns the
intentions of each human in the scene to reach a fixed target point or to interact
with a robot directly from the Social Force Model. The assumption made here
is that intentions are valid for the current time span and change over time.
In addition, we assume that instantaneous navigational intentions can be fully
understood from observing the human navigation. We do acknowledge that the
incorporation of other cues such as gaze or incorporating more information about
the environment, such as a semantic map, can allow a better understanding of
human intentions. However, we assume this information is not available for the
robot, which relies solemnly on the humans’ positions in an occupancy grid map
to learn their intentions. The proposed approach integrates a Kalman Filter
with a motion model based on SFM to track humans and learns their intentions
in the environment. While reducing the difference between the predicted and
observed human positions, we learn SFM weights specific to each human. Our
experiments show the advantage of this method in tracking humans as well as the
direct connection between the learned intentions and the actual human motions
in the environment.

2 Human Tracking and Intention Learning

We rely on the Social Force Model [5] to track humans and learn their intentions.
For a human moving to a fixed target with robots and other humans in the
environment as shown in Fig. 1, the resultant social force can be expressed as:

F = α3Frobot + α2Fhuman + α1Fobstacle + α0Ftarget, (1)

where F is the resulting force driving the human, Frobot is the force pushing the
human toward or away from the robot, Fhuman is the force pushing the human
toward or away from other humans, Fobstacle is the force driving the human away
from obstacles, and Ftarget is the force pushing the human to the target.

Each of the forces is exponentially related to the distance between the two
objects enforcing it, with the exception of the last force which is linearly related
to the human speed. α0, α1, α2, and α3 represent the weight of each force, and
it can be considered as the intention of the human to consider the corresponding
force while navigating. For example, if the human ignores the robot’s existence



Online Learning of Human Navigational Intentions 3

Fig. 1. Example social forces in the environment, showing interaction force to a robot,
interaction force to other humans, and interaction force to obstacles. (Color figure
online)

completely, the corresponding α should be zero. If the human interacts with the
robot, the corresponding α should be positive, while if he runs away from the
robot, the corresponding α should be negative. Mathematically, the forces are
represented as follows:

Fo = Ao × e(δo−‖do‖)/Bo × do

‖do‖ , (2)

where o is a member of the set O = {robot, human, obstacle}, Ao, δo, and Bo are
fixed parameters specific to each member of the set, do is the distance vector
between the human and the corresponding object in O, and ‖do‖ is its norm.
Ferrer et al. [7] show how to learn Ao, δo, and Bo from a human dataset and
provide typical values for each. On the other hand, we model the force to a fixed
target as:

Ftarget = κ
v

‖v‖ (1 − cosθ), (3)

where κ is a fixed parameter, θ is the angle between the human trajectory and
the target direction, and ‖v‖ is the norm of the human velocity v. This equation
emphasizes the difference in direction between the actual trajectory and the one
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leading to the target, which helps the robot learn the intention of the human to
reach the corresponding position.

Consequently, for a set of learned weights, the social force F can be calculated
based on the observed environment, and we can model the human motion as
presented in [6]: [

xt

vt

]
=

[
xt−1 + vt−1Δt + F

2 Δt2

vt−1 + FΔt

]
, (4)

where xt is the position of the human, vt is the velocity of the human at time step
t, and Δt is the time difference between the two time frames. The motion model
of each human can be used to track the human using a Kalman Filter, which
predicts their future positions after each observation. Our framework learns the
underlying weights that could lead to the observed position by reducing the
error between the observed and the predicted positions. As such, the tracking
of each human starts with an assumption for each α and updates them for
each human as the robot receives more observations. Specifically, the algorithm
updates the parameters to reduce the difference between the predicted and the
observed human position. This can be achieved as the observed position presents
the real social force driving the human, while the predicted position presents the
estimated one. As such, the difference between the two is linearly related to the
error in the estimate of the Social Force Model. Mathematically, we denote the
difference between the two positions as diff (F) and learn each α as:

αi,t = αi,t−1 + diff (F) × Fi × γ, (5)

where Fi is the interaction force corresponding to αi as presented in Eq. 1, and
γ is the learning rate.

In this work, we are mainly concerned with the two interaction forces that
show the intention of the human to interact with the robot and the intention to
reach a fixed target point in the environment.

3 Experiments and Results

We have proposed a method to learn human intentions while observing their nav-
igation paths. Due to the complexity of human intentions, it is difficult to define
a single test that can prove the viability of the proposed algorithm. Instead, we
split our experiments into three parts:

1. First, we investigate the tracking ability of our algorithm on the ETH walking
pedestrians dataset [11]. The dataset provides annotated trajectories of 650
humans recorded over 25 min of time on two different maps referred to as
ETH-Univ and ETH-Hotel.

2. Second, we choose scenes from the dataset with an obvious change in the
human direction and study the change in the weight of reaching the human’s
final goal. This test shows the ability of the algorithm to learn the intention
of the human to reach a fixed target.
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3. Finally, we test the system on a real robot with humans in the scene. As the
humans navigate around the robot, we study their intentions to interact with
it.

Table 1. Comparison of average displacement error (m)

ETH-Univ ETH-Hotel

HIT 0.11 0.036

Target [6] 0.16 0.085

Social-LSTM [10] 0.008 0.15

3.1 Human Tracking

To assess the tracking ability, we compare the average displacement error
between the predicted and the observed human position of our algorithm against
the one achieved by the methods in [6,10] based on a one-step look-ahead
analysis.

Luber et al. [6] presented Target, a tracking algorithm that combines the
Social Force Model with a Kalman filter to predict humans’ future positions.
Their approach assumes fixed intentions for each human and learns their targets
online. While this method allows the tracker to adapt to the target location, it
does not adapt to the changes or preferences in intentions toward other humans
and obstacles.

On the other hand, Alahi et al. [10] presented Social-LSTM, a deep learning
algorithm for human tracking. Their approach employs an LSTM based network
to predict future positions based on previous ones. In addition, they introduce
the social pooling layer where the network predicting a human’s position shares a
hidden layer with other humans’ networks. This approach allows the network to
learn the interaction among humans in a scene and predict the future positions
accordingly.

Our results presented in Table 1 show that our algorithm outperforms Tar-
get in both datasets and outperforms Social-LSTM on the ETH-Hotel dataset.
While Social-LSTM outperforms our algorithm on the ETH-Univ dataset, its
performance drops drastically on the ETH-Hotel dataset, where obstacles are
closer than the former and human crowds are denser. This can be related to the
network not being able to generalize to a dataset with settings different than
the social aspects it was trained on. However, the increased human proximity
improved the performance of our algorithm and Target’s due to the importance
of social forces in such scenes.

3.2 Intention Learning

We mapped the ETH dataset into a 2-dimensional simulator as explained in our
previous work [12]. In this simulator, we searched manually for scenarios where
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the human intends to reach a final goal that is changing over time, represented by
a sudden or gradual change of motion direction and plotted the learned intention
to reach that goal.

We show two samples of these scenarios in Fig. 2. In Fig. 2(a), we can see the
human is traversing in a direction that might not lead to the target for the first
few frames and then changing his direction toward the target. It can be observed
in Fig. 2(b) that the change in direction is directly related to the stabilization of
α0, namely the intention weight for reaching the target, after decreasing for the
first few frames. Figure 2(c) shows an opposite scenario where the human moves
toward a target in the first few frames, after which he changes his direction away
from the target. Consequently, it can be observed in Fig. 2(d) that the intention
weight decreases substantially after the change in the direction.

(a) (b)

(c) (d)

Fig. 2. Two sample trajectories from the dataset mapped into the simulator. The
environments in (a) and (c) show static obstacles in dark gray and humans as blue
ellipses. The start point is shown in green and the target region is shown in red. The
start point in (a) is in the lower-right corner outside the view frame. The orange line
depicts the human’s trajectory. (b) shows the intention to reach the target for the
trajectory in (a), and (d) shows the intention to reach the target for the trajectory in
(c). (Color figure online)
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Fig. 3. System implementation on the real robot.

These two scenarios show that our algorithm is able to learn the intention
of the human to reach the target and update its belief about the intentions as
they change.

3.3 Robot Experiments

Our system implementation on the robot is outlined in Fig. 3. The experiments
were conducted on a Segway RMP110 based robot [13] equipped with a SICK
TiM LiDAR scanner for localization and an Orbbec Astra Pro RGBD camera
for human detection and tracking. To detect humans, we rely on the human
detection open-source code presented by the Spencer project [14], which provides
a variety of algorithms to detect humans using an RGBD camera.

The robot continuously localizes itself in an occupancy grid map with the aid
of the LiDAR. At the same time, its position and velocity as well as the human’s
are employed to calculate the interaction force between the two entities. To
calculate the interaction forces between the human and nearby obstacles, we
apply Eq. 2 between his location and the closest obstacle to that location in the
occupancy grid map. Finally, the relative positions of the detected humans allow
the calculation of the interaction forces between them.
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Fig. 4. (a) Human walking away from the robot. (b) Human approaching the robot to
interact with it after he was walking away from it in the previous frame. (c) Plot of
the learned intention to interact decreasing when the human was not reaching for the
robot and then increasing gradually to the value corresponding to the scene in (b).

During the experiments, the robot was either static or navigating in the
environment. In both cases, the robot continuously detected humans around it
and learned their intentions. When the robot is navigating, it stops just before
the human when it detects an intention to interact. For the sake of clarity and
brevity, we only show the intention analysis of the human when the robot is static
in the environment, as this analysis is not affected by the robot’s movement.

Figure 4 shows an example scenario where the human started its path by
moving away from the static robot to come back later and interact with it. The
learned intention to interact shows a decrease while the human was moving away
from the robot and then increases while the human moves toward the robot. This
shows the algorithm was able to adapt to the change in intentions and correct
its parameters as soon as the human changed their intentions.
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These experiments show the viability of the algorithm when applied on a
real robot, where the robot was able to learn the human intentions to interact
despite the short range of the camera.

4 Conclusion and Future Work

We presented HIT, a novel approach to track humans while learning their naviga-
tional intentions. The proposed method was tested in simulation and real-world
scenarios, where in the former we observed the change in the learned intentions
as the human changed their direction of motion, and in the latter, we observed
the learned intentions of a human to interact with the robot in controlled test
scenarios. These experiments proved the ability of the algorithm to learn human
navigational intentions and adapt to changes quickly. In addition, we tested the
effect of the learned intentions on human tracking and showed its advantage over
other tracking algorithms from the literature.

In the future, our approach can be implemented into a hierarchical system
where the locally learned intentions can be modeled to infer global human inten-
tions. In such a system, the local intentions can be treated as the observations
of a Hidden Markov Model used to learn the latent global intentions similar
to [15]. We would expect the implementation of such a system to be around
a semantic map representing the function of each object and location in the
environment and the connections among them. We also intend to use the pro-
posed approach to improve the legibility and social navigation of service robots
in human-populated environments.
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