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Abstract—We address the problem of repeated coverage of a
target area, of any polygonal shape, by a team of robots having a
limited visual range. Three distributed Cluster-based algorithms,
and a method called Cyclic Coverage are introduced for the
problem. The goal is to evaluate the performance of the repeated
coverage algorithms under the effect of changes in the robots’
visual range. A comprehensive set of performance metrics are
considered, including the distance the robots travel, the frequency
of visiting points in the target area, and the degree of balance
in workload distribution among the robots. The Cyclic Coverage
approach, used as a benchmark to compare the algorithms,
produces optimal or near-optimal solutions for the single robot
case under some criteria. The results show that the identity of
the optimal repeated coverage algorithm depends on the metric
and the robots’ visual range.

Keywords-Multi-Robot Systems; Teamwork; Coordination; Re-
peated Area Coverage

I. INTRODUCTION

Distributed area coverage as a task for multi-robot systems
is a challenging problem in different scenarios such as search
and rescue operations, planetary exploration, intruder detection,
environment monitoring, floor cleaning and so on. In this task,
a team of robots cooperatively visits (observes or sweeps) an
entire area, possibly obstructed by obstacles. The goal is to
build efficient paths for all the robots which jointly ensure
that every point in the environment is visited by at least one
of the robots. If there is a need to detect some events in the
environment, area coverage guarantees finding all of them in
the target area.

There are two classes of coverage problems:
• Single Coverage: The aim is to cover the target area until

all the accessible points of interest in the environment
have been visited at least once, while minimizing the time,
distance traversed by the robots, and the number of visits
to the points [1], [2], [3], [4].

• Repeated Coverage: The goal is to cover all the accessible
points of interest in the environment repeatedly over time,
while maximizing the frequency of visiting points in
the target area, minimizing the sum/maximum length of
the paths/tours generated for the robots, balancing the
workload distribution among the robots, or maximizing
the reward by detecting the maximum number of events,
weighted by their importance, in minimum time. Visiting
the points in the area can be performed with uniform
or non-uniform frequency, depending on the priorities of
different parts of the area. In this paper, we use the terms
’coverage’ and ’repeated coverage’ interchangeably.

Several research communities including robotics/agents [5],
[6], sensor networks [7], operations research [8] and computa-
tional geometry [9] work on variants of the repeated coverage
problem.

In operations research, the Vehicle Routing Problem has
some similarity to the repeated coverage scenarios [10]. In
computational geometry, this problem originates from the Art
Gallery Problem [11] and its variant for mobile guards, the
Watchman Route Problem [12]. In the Art Gallery Problem,
the goal is to find a minimum number of static guards (control
points) which can jointly cover a workspace under different
restrictions. On the other hand, in the Watchman Route Problem
the objective is to compute routes (closed curves) watchmen
should take to guard an entire area given only the map of the
environment. Most research done on the above problem defini-
tions in computational geometry deal with simple polygonal
spaces without obstacles, unlimited range of agents’ vision,
single agent scenarios, and scenarios in which a common initial
location is determined for all the agents. Pursuit-Evasion is an-
other closely related problem studied in both the computational
geometry and the robotics communities. In this task, one or
more searchers move throughout a given target area in order
to guarantee the detection of all the evaders, which can move
arbitrarily fast [13]. In Pursuit-Evasion scenarios the searchers
do not necessarily cover the entire target area.

In the robotics community, most research in this area is
carried out under the rubric of Area Patrolling. Elmaliach et al.
[6] proposed a centralized algorithm which guarantees optimal
uniform frequency, i.e., all cells are visited with maximal
and uniform frequency in a non-uniform, grid environment.
Grid-based representations have limitations since they do not
consider the structure of the environment and as a result are
unable to handle partially occluded cells or cover areas close
to the boundaries in continuous spaces. Our algorithms, on the
other hand, guarantee complete coverage of the area. Another
problem with some of the existing empirical studies in the field
of area patrolling is the lack of a comprehensive population
of environment maps in the experiments. In the works by
Almeida et al. [14] and Machado et al. [5] only six maps
were used to evaluate the coverage algorithms, two of which
have almost 75% similarity. In two other maps called ‘circular’
and ‘corridor’, only one representation of the environment (i.e.
a chain) is possible due to the structure of the environments.
Moreover, the authors did not provide details on how the graph
is built to represent the environment. They typically presume
the existence of a graph which is not a complete model of the
environment, just a rough approximation of it. The proposed
architectures also consider the agents as points with no extent
or limit on visual range, so the problem dealt with is reduced to
a graph exploration/coverage task rather than an area coverage
scenario. Our paper, on the other hand, builds a complete model
of the environment considering the limited visual range of the
robots. Moreover, we will investigate the effect of varying
the robots’ visual range on the performance of the repeated
coverage algorithms with extensive experiments using different



metrics including the distance the robots travel, the frequency
of visiting points in the target area, and the degree of balance
in workload distribution among the robots.

The contributions of this paper are as follows:
1) We present an approach to modeling the environment

using graph-based methods considering the limited visual
range of the robots. To this end, an environment modeling
approach is developed based on the Visibility Graph.

2) Three Cluster-based algorithms are introduced for the
distributed repeated coverage problem, differing as to
how they cluster the graph, namely: the Uninformed Clus-
tering Coverage, the Edge-based Clustering Coverage,
and the Node-based Clustering Coverage algorithms.

3) An algorithm called Cyclic Coverage is introduced and
used as a benchmark to compare the performance of the
repeated coverage algorithms. The algorithm finds the
shortest tour on the graph similar to solving a Travelling
Salesman Problem (TSP). We are going to show that
even though the Cyclic Coverage approach can produce
optimal or near-optimal solutions for a single robot case
under some particular metrics; however, it is not always
the best solution when extending the problem to multi-
robot scenarios.

4) The effect of varying the robots’ visual range on the
performance of the repeated coverage algorithms is in-
vestigated.

The results show that optimizing each of the metrics depends
on the choice of the repeated coverage algorithm, and the
robots’ visual range.

II. PROBLEM DEFINITION AND PRELIMINARIES

The problem is to cover the environment repeatedly over time
using an arbitrary number of robots. To this end, we make the
following assumptions.

Assumption 1. The environment boundary is a known 2D
simple polygon containing static polygonal obstacles.

Assumption 2. The robots are presumed to have a 360 ◦ field
of view and a predefined circular limit of visual range.

Assumption 3. The robots are homogeneous, with the same
speed, and can move in any direction.

In order to evaluate the coverage mission, some metric
criteria need to be determined, but before that we introduce
some basic definitions:
• Full Single Coverage: all the robots traverse the paths

assigned to them just once.
• Visiting Period (VP): the time interval between two visits

to a point of interest in the target area. A point of
interest can have more than one Visiting Period, due to
the possibility of the point being visited more than once
in different time intervals by more than one robot in a
Full Single Coverage.

• Average Visiting Period (AVP): the average of the Visiting
Periods of a point of interest.

• Worst Visiting Period (WVP): the maximum period of
time it takes a point of interest to be re-visited in the
target area.

• Visiting Frequency (VF): the number of visits to a point
of interest by a single robot in a Full Single Coverage. In
case a point of interest is visited by more than one robot
in a Full Single Coverage, the point will have more than
one Visiting Frequency, each of which associated with one
robot.

The repeated coverage algorithms will be evaluated based on
the following metrics:
• Total Path Lengths (TPL): the sum of the lengths of the

paths assigned to the robots in order to have a Full Single
Coverage.

• Total Average Visiting Period (TAVP): the average of the
Average Visiting Periods of all the points of interest in the
target area.

• Total Worst Visiting Period (TWVP): the maximum Worst
Visiting Period of all the points of interests in the target
area.

• Balance in Workload Distribution (BWD): the degree
of balance in the workload distribution among a team of
robots. A workload distribution is completely balanced
if the standard deviation of the lengths of the constructed
paths for the robots is zero: the paths assigned to the robots
all have equal lengths.

In this study, the aim is to minimize TPL, TAVP, and TWVP
and to maximize BWD in the repeated coverage scenario.
Interestingly, it is impossible to develop even approximate
polynomial time algorithms, when optimizing each of the
metrics for the repeated coverage problem, unless P = NP
[12]. Furthermore, optimizing all these metrics simultaneously
is another challenge, because some are mutually conflicting in
the coverage mission. These considerations require us conduct
an extensive experimental analysis to evaluate the performance
of the algorithms.

The sequential stages of the proposed repeated coverage
algorithms are as follows:

1) The locations of static guards required to cover visually
a given 2D environment are determined, allowing for the
limited range of the robots’ vision (Section III).

2) A graph is built on the guards and the obstacles based
on the Visibility Graph (Section IV-A).

3) The graph is reduced to Reduced-Vis representation (Sec-
tion IV-B).

4) Cluster-based Coverage Algorithms: The Reduced-Vis
is partitioned into as many clusters as the number of
robots. To this end, three different clustering algorithms
are introduced, namely: Uninformed Clustering, Edge-
based Clustering, and Node-based Clustering. Finally,
a tour is built for each robot on the clustered reduced
graph. For this purpose, two tour building algorithms are
proposed, namely: Double-Minimum Spanning Tree, and
the Chained Lin-Kernighan algorithms (Section V).

5) Cyclic Coverage Algorithm: Rather than partitioning the
Reduced-Vis among the robots, the Cyclic Coverage al-
gorithm creates a tour on the whole reduced graph, and
then distributes the robots equidistantly around it (Section
VI).

Since the problem is a repeated coverage scenario, we can
ignore the initial cost of moving the robots from their initial
locations to their assigned paths in the target area, as that time
is negligible compared to the recurring patrol time.

In the following sections, we will explain the different stages
of the proposed algorithms for repeated coverage of a target
area in detail.

III. LOCATING GUARDS WITH LIMITED VISUAL RANGE

In our problem definition, we presume the robots are
equipped with panoramic cameras with a 360 ◦ field of view.
However, the cameras’ visual range is limited. The proposed
approach initially locates a set of guards (Points of Interests)
required to visually cover an entire area. The term guard is



(a) Original Map (b) Trapezoidation + Guards (c) Visibility Graph (d) Reduced-Vis

Figure 1: Locating Guards in a Sample Environment

taken from the Art Gallery Problem [11]. These static guards
are control points that can jointly cover the whole environment
while satisfying the limited visual range constraint of the
robots. In other words, if there are as many robots as there are
guards, and each robot were stationed on a guard, the entire
area would be covered visually by the robots.

To locate the guards, the algorithm decomposes the initial
target area, a 2D simple polygon with static obstacles, into
a collection of convex polygons using a Trapezoidal Decom-
position method, and then applies a post-processing approach
to eliminate as many trapezoids as possible [15]. The post-
processing step is more effective in cluttered areas, and since
the number of guards located by the algorithm is directly
correlated to the number of trapezoids, fewer trapezoids will
result in fewer guards.

At the next step, a divide-and-conquer method [16] is used
to successively subdivide each of the resulting convex polygons
(trapezoids) into smaller convex sub-polygons until each of
them can be covered visually by one guard.

Figure 1b shows the computed guards after trapezoidation
on the sample environment of Figure 1a.

IV. BUILDING THE GRAPH

Having located the static guards in the previous step, the
Visibility Graph is then built on the obstacles’ nodes (P) and
the computed guards (SG).

A. Visibility Graph
The Visibility Graph (VG) is a graph structure used in

computational geometry and robot motion planning [17]. In
our VG, the computed guards and the corners of the area in the
Euclidean plane comprise the nodes of the Visibility Graph. If
two nodes are mutually visible, they are connected using an
edge in the graph. Two nodes of the environment are mutually
visible if the line segment joining them does not intersect any
obstacle. Figure 1c shows the Visibility Graph built on the
sample environment.

B. Graph Reduction
The aim of graph reduction is to improve efficiency by

minimizing the average or total time taken for the robots
to traverse the graph. The input of the algorithm is the VG
discussed in Section IV-A, and the output is a graph called
Reduced-Vis.

The method starts by using the Floyd-Warshall algorithm
to find the set MD =

{
(ci j,vi,v j)|vi,v j ∈Vvis

}
of minimum

distances, ci j, and the set SP =
{
(ri j,vi,v j)|vi,v j ∈Vvis

}
of

shortest paths, ri j, between any pair of nodes vi and v j of the
input graph.

The minimum value of all the minimum distances in MD
is then selected provided that both the endpoints of the corre-
sponding shortest path in SP belong to the set of static guards,
SG, computed in section III. The chosen path, including all its
nodes and edges, forms the initial component of the Reduced-
Vis.

Next, among all the guards that have not yet been added
to the graph, the algorithm finds the closest static guard to
the current component, merging the corresponding shortest
path with it. Following the same process, the algorithm keeps
expanding the Reduced-Vis until there are no more guards to be
added to the graph. The resultant graph is the final Reduced-
Vis. The nodes of the reduced graph includes all the guards
(SG), as the Points of Interests in the target area and the
subset of the obstacles’ nodes (P̃⊂ P). Traversing the Reduced-
Vis guarantees complete coverage of the target area given the
limited visual range of the robots.

Figure 1d illustrates the Reduced-Vis computed on the VG
of Figure 1c.

V. CLUSTER-BASED COVERAGE ALGORITHMS

Cluster-based coverage algorithms decompose the Reduced-
Vis into |R| (number of robots) clusters, T =

{
T1,T2, . . . ,T|R|

}
,

such that
|R|⋃
i=1

VTi = SG; SG is the set of guards for the reduced

graph and VTi is the set of guards of the cluster Ti. Below,
three different Cluster-based coverage algorithms are presented.
Having built the clusters on the Reduced-Vis, a tour is built
on the generated cluster for each robot. The tour building
algorithms are discussed in Section V-D.

A. Uninformed Clustering Coverage
The Uninformed Clustering Coverage algorithm partitions

the Reduced-Vis into |R| clusters by removing the
|R| − 1 longest edges of the graph. Thereafter, a tour is
built on each cluster generated for the robots. In this
algorithm, the evaluation metrics are defined as below:

T PL =
|R|

∑
i=1

Length(Tour(Ti)). (1)

Tour(Ti) is the tour built on cluster Ti, and
Length(Tour(Ti)) is the length of the tour.

TAV P =
∑node∈SG AV P(node)

|SG|
,SG = Static Guards, (2)



where AV P(node) = Length(Tour(Ti))
V Fi(node) , i ∈ {1,2, ..., |R|}, and

node ∈ Ti. Also, V Fi(node) is the node Visiting Frequency in
tour Ti.

TWV P = maxi=1,2,...,|R|(Length(Tour(Ti)). (3)

Balance in Workload Distribution is computed after building
the tour:

BWD(Tour(T )) =

(1− ST D({Length(Tour(Ti))|i = 1,2, ..., |R|})
ST D(

{
T PL,α1,α2, . . . ,α|R|−1|αi = 0

}
)
)×100,

(4)

where ST D(.) is the population standard deviation, and
T =

{
T1,T2, . . . ,T|R|

}
is the |R| clusters created for

the |R| robots. For the case of one robot, we assume
that BWD(Tour(T )) = 100. In BWD’s computation,
ST D({Length(Tour(Ti))|i = 1,2, ..., |R|}) is the population
standard deviation of the set of tours created for the robots,
and ST D(

{
T PL,α1,α2, . . . ,α|R|−1|αi = 0

}
) is the worst case

scenario, in which one robot is in charge of the whole task,
i.e. T PL, and the other robots are idle with zero path length
(α1,α2, . . . ,α|R|−1).

Figure 2 illustrates the tours built for four robots (shown by
black, blue, green, and red circles) on the sample environment
by the Uninformed Clustering Coverage algorithm.

B. Edge-based Clustering Coverage
The Edge-based Clustering Coverage approach builds a set

of |R| clusters on the reduced graph. The clusters are initiated
as follows: the endpoints of the longest path in the original
VG graph are selected as the starting points of the first two
clusters. For the next cluster, a node in SG is selected such that
it maximizes the minimum distance from the starting points of
the first two clusters. Similarly, for the next cluster, a node is
selected that maximizes the minimum distance from the starting
points of the other three clusters. This continues until |R| initial
nodes are found for the |R| clusters of the robots.

Starting from the initial nodes, clusters are expanded sequen-
tially, by choosing one guard at a time, until all the guards of
the reduced graph have been visited at least once. The guards
are visited in a way that satisfies the following constraints:
• Find the nearest immediate (that is, ignoring the corners

of the obstacles) guard, add it and the corresponding
edge/path to the cluster provided that it does not create a
cycle. In case of a tie, choose the guard which maximizes
the sum of the distances from the guards most recently
selected by the other clusters.

• Do not add a guard which has already been chosen by any
other cluster, unless there is no other unvisited immediate
guard.

• Remove Common Nodes: When all the guards of the graph
are selected by at least one cluster, remove as many as
possible of the common nodes shared by the clusters of
the robots. To this end, starting from the most recently
selected guard, discard the guards and their corresponding
edges/paths from the cluster if they have been selected
sooner by any other cluster. Continue this process until
it reaches the most recently selected guard which has not
been selected sooner by other clusters.

Finally, a tour is built on the generated cluster for
each robot. In the Edge-based Clustering Coverage
approach, the evaluation metrics are defined as below:

TAV P =
∑node∈SG AV P(node)

|SG|
,SG = Static Guards, (5)

where AV P(node) = 1{
∑i

V Fi(node)
Length(Tour(Ti))

} , i ∈ {1,2, ..., |R|}, and

node ∈ Ti. Also, V Fi(node) is the node Visiting Frequency in
tour Ti.

The computation of the AV P here is different from that in
the Uninformed Clustering Coverage, because in the Edge-
based Clustering Coverage, a node can belong to more than
one cluster.

TWV P = maxnode∈SG(WV P(node)), (6)

where WV P(node) = mini=1,2,...,|R| (max{V Pi(node)}) ,
node ∈ Ti.

In computing the WVP of a node, we first calculate the
maximum Visiting Period of the node in each cluster, and then
choose the minimum value among those maximum Visiting
Periods. Recall that each node can belong to more than one
cluster, and can also have more than one Visiting Period in
each cluster.

The computations of TPL, and BWD(Tour(T)) are the same
as given for the Uninformed Clustering Coverage approach.

Figure 3 illustrates the tours built for four robots (shown by
black, blue, green, and red circles) on the sample environment
by the Edge-based Clustering Coverage algorithm.

C. Node-based Clustering Coverage
The Node-based Clustering Coverage approach uses the k-

Means clustering algorithm to divide the guards into |R| disjoint
clusters. In the first iteration, the initial centroids are found
in the same way as finding the starting points of the clusters
discussed in the Edge-based Clustering Coverage algorithm. In
the next iterations, since the computed centroids may not lie
on the nodes of the reduced graph, they are matched to the
closest guard in the environment. Distance from the centroids
is determined based on the distance in the original VG graph
rather than the Euclidean distance.

Having built the |R| clusters on the guards, we connect each
pair of guards in each cluster if they have a corresponding edge
in the Reduced-Vis. Thereafter, we do a connectivity test on all
the clusters, meaning that every pair of guards in each cluster
should be connected through a path. For this purpose, we first
find the disconnected components within the cluster and then
compute the Minimum Spanning Tree on them based on the
edges of the original VG graph. We add the Minimum Spanning
Tree’s corresponding edges and nodes to the cluster, and finally
a tour is built on the cluster. The tour is then assigned to a robot,
and the robot repeatedly traverses the tour.

In the Node-based Clustering Coverage approach the compu-
tations for TAVP, TWVP, TPL, and BWD(Tour(P)) are the same
as given for the Edge-based Clustering Coverage approach.

Figure 4 illustrates the tours built for four robots (shown by
black, blue, green, and red circles) on the sample environment
by the Node-based Clustering Coverage algorithm.

D. Building the Tour
Having built the clusters on the Reduced-Vis, we use two

algorithms to build the tours on the clusters:



(a) Double-MST (b) CLK

Figure 2: Uninformed Clustering Coverage

(a) Double-MST (b) CLK

Figure 3: Edge-based Clustering Coverage

(a) Double-MST (b) CLK

Figure 4: Node-based Clustering Coverage

(a)

Figure 5: Cyclic Coverage

1) Double-Minimum Spanning Tree (Double-MST): Double-
Minimum Spanning Tree takes a cluster as an input and returns
a cycle whose length is twice the length of the cluster. In this
algorithm, every edge of the cluster is visited twice.

2) Chained Lin-Kernighan (CLK): Chained Lin-Kernighan,
a modification of the Lin-Kernighan algorithm, is generally
considered to be one of the best heuristic methods for gen-
erating optimal or near-optimal solutions for the Euclidean
Traveling Salesman Problem [18]. Given the distance between
each pair of a finite number of nodes in a complete graph, the
Travelling Salesman Problem (TSP) is to find the shortest tour
passing through all the nodes exactly once and returning to the
starting node.

The input of the Chained Lin-Kernighan algorithm needs to
be a complete graph. To this end, the Reduced-Vis is made
complete by adding edges from the original VG graph when
there does not exist an edge between two nodes in the reduced
graph. If there is no edge between the two nodes in the original
graph either, a virtual edge is added to the reduced graph to
connect the two nodes. The virtual edge is the shortest path
between the two nodes in the Visibility Graph. The Chained
Lin-Kernighan algorithm then finds the shortest tour passing
through all the nodes of the Reduced-Vis.

VI. CYCLIC ALGORITHM

We develop a method called Cyclic Coverage and use it
as a benchmark to compare the repeated coverage algorithms.
Similar to the Cluster-based coverage algorithms, the Cyclic
Coverage approach locates the guards, builds the graph (VG),
and then reduces the graph (Reduced-Vis). However, rather than
partitioning the reduced graph among the robots, it creates
a tour on the whole Reduced-Vis using the Chained Lin-
Kernighan algorithm. The proposed algorithm then distributes
the robots equidistantly around the tour and moves them
repeatedly around it. The Cyclic Coverage approach produces
optimal or near-optimal solutions for the single robot case
under Total Path Length and the Total Worst Visiting Period.

In this algorithm, the computations for TAVP, TWVP, TPL are
the same as given for the Edge-based Clustering Coverage and
the Node-based Clustering Coverage approaches. The notion
of Balance in Workload Distribution is not defined in this
approach, since all the robots traverse the whole tour built on
the reduced graph.

Figure 5 illustrates the tours built for four robots (shown by
black, blue, green, and red circles) on the sample environment
by the Cyclic Coverage algorithm.

VII. EVALUATION AND EXPERIMENTS

We have developed a simulator to test the algorithms in dif-
ferent scenarios. The simulator can support different numbers
of robots in the target area, different visual ranges for the
robots, and varying degrees of clutter in the environment. A
random map generator was also developed as a part of the
simulator which extends a library [19] to build rectilinear or
non-rectilinear polygons with free form polygonal obstacles
within the space. Maps can have different numbers of nodes
and percentages of clutter. The simulator will be made freely
available online.

The goal of the experiments is to evaluate the performance
of the four repeated coverage algorithms:
• Uninformed Clustering Coverage (UCC)
• Edge-based Clustering Coverage (ECC)
• Node-based Clustering Coverage (NCC)
• Cyclic Coverage (CC)

under the effect of changes in the Visual Range of the Robots.
The performance of the coverage algorithms is evaluated based
on these criteria:

• Total Path Length (TPL)
• Total Average Visiting Period (TAVP)
• Total Worst Visiting Period (TWVP)
• Balance in Workload Distribution (BWD)

We consider three types of environments in the experiments:
sparse (0−25% cluttered), semi-cluttered (25−50% cluttered),



(a) Average Number of Guards Computed on the Selected Maps as a
Function of Robots’ Visual Range

(b) Number of Guards Computed on Each Selected Map as a Function
of the Chosen Visual Ranges

Figure 6: Number of Guards vs. the Robots’ Visual Range

cluttered (50−75% cluttered). Ten different maps are used in
the experiments for each of the three environment types (30 in
total). The clutter percentage of an environment is the ratio of
the area of the obstacles to the whole target area (i.e. obstacles
+ free space). The size of the environments is 15m×15m.

Furthermore, three levels of visual range (low, medium, and
high) are determined in order to investigate the impact of the
visual range on the performance of the coverage algorithms.
Figure 6a shows the average number of guards computed on
the 30 maps used in the experiments under visual ranges up
to 400cm. As shown in the figure, the number of computed
guards declines with the increase in the visual range of the
robots, and after visual range of 150cm, the number of guards
becomes essentially fixed. Based on this distribution and some
initial experiments to find the proper interval between the visual
ranges in order to show the difference of the results more
effectively, we chose visual ranges 25cm (low), 75cm (medium)
and 150cm (high) to evaluate the algorithms. Figure 6b shows
the number of guards computed on each of the selected maps
(sorted from least cluttered to most cluttered) under different
visual ranges of the robots. The trend of the figure implies
that as the clutter of the environment increases, the number of
guards declines in general.

In order to eliminate the dependency of the results on specific
maps, we use the Cyclic Coverage approach as the benchmark
and the results of the repeated coverage algorithms on different
criteria are re-calculated as ratios to this reference solution.
For each optimization metric (i.e. TPL, TAVP, TWVP, BWD),
the average values of ratios over all the maps are shown
respectively in Figures 7, 8, 9, 10 for different numbers of
robots (1,2, . . . ,15), under the selected visual ranges.

In sum, we have collected data from 5400 =
4 CoverageAlgorithms × 15 Robots × 3 VisualRanges ×
30 Maps runs of the simulator. The results can be used
as a guideline for selecting an appropriate combination of
repeated coverage algorithm and the choice of robots’ visual
range based on the particular scenario and the metric to be
optimized.

A. Results Under Total Path Length
Figure 7 shows the performance of the coverage algorithms

under Total Path Length on the basis of the pre-determined
visual ranges of the robots.

In all the tested visual ranges for the robots, at least one
of the Cluster-based approaches (i.e. Uninformed Clustering
Coverage) outperforms the Cyclic Coverage algorithm, and
interestingly as the visual range of the robots increases, there

are more Cluster-based algorithms that dominate the Cyclic
Coverage approach, especially in the scenarios in which more
robots are involved. The Node-based Clustering Coverage
approach also dominates the Edge-based Clustering Coverage
algorithm. This dominance intensifies with the increase in the
robots’ visual range.

Under this criterion, the choice of tour building algorithm
significantly affects the coverage approaches, in which using
CLK lead to shorter paths for the robots compared with Double-
MST.

The results imply that although the Cyclic Coverage algo-
rithm produces optimal or near-optimal solutions for single-
robot cases, it is not the best solution when extending the
problem to multi-robot scenarios.

B. Results Under Total Average Visiting Period
Figure 8 shows the performance of the coverage algorithms

under Total Average Visiting Period on the basis of the pre-
determined visual ranges of the robots.

As the visual range of the robots increases, the Cluster-based
approaches show better performance. For the medium and high
visual ranges, both the Node-based Clustering Coverage and
the Edge-based Clustering Coverage algorithms dominate the
Cyclic Coverage algorithm, especially in the scenarios in which
more robots are involved. However, for the low visual range, the
Cyclic Coverage algorithm is the best choice of the coverage
mission.

Under this criterion, the choice of the tour building algorithm
significantly affects the coverage approaches, such that using
Double-MST outperforms CLK in minimizing the Total Average
Visiting Period of the points in the target area.

C. Results Under Total Worst Visiting Period
Figure 9 shows the performance of the coverage algorithms

under Total Worst Visiting Period on the basis of the pre-
determined visual ranges of the robots.

An interesting observation is the decrease of the difference
in performance among the Cluster-based approaches with the
increase in the robots’ visual range. Nonetheless, The Cyclic
Coverage approach is the best choice for minimizing the Total
Worst Visiting Period, regardless of the visual range of the
robots. The Node-based Clustering Coverage approach also
outperforms the other Cluster-based approaches.

Under this criterion, the choice of tour building algorithm
affects the coverage approaches especially for the low visual
range, such that using CLK outperforms the Double-MST in
minimizing the Total Worst Visiting Period of the points in the
target area.
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Figure 7: Total Path Length.
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Figure 8: Total Average Visiting Period.
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Figure 9: Total Worst Visiting Period.
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Figure 10: Balance in Workload Distribution.



D. Results Under Balance in Workload Decomposition
Figure 10 shows the performance of the coverage algorithms

under Balance in Workload Decomposition on the basis of the
pre-determined visual ranges of the robots.

For the low visual range, we noticed improvements in the
Balance in Workload Distribution with the increase in the
number of robots in the environment. However, for the medium
visual range, this improvement disappears for the Node-based
Clustering Coverage and the Edge-based Clustering Coverage
algorithms, and for the high visual range, the Balance in
Workload Distribution declines drastically in the Node-based
Clustering Coverage algorithm, especially in the scenarios in
which more robots are involved.

In summary, for the low visual range, the Node-based
Clustering Coverage approach is the best choice for the cov-
erage mission; however, with the increase of the visual range,
the Edge-based Clustering Coverage approach dominates the
Node-based Clustering Coverage algorithm for maximizing the
Balance in Workload Distribution.

Under this criterion, the choice of tour building algorithm
affects the coverage approaches, such that using CLK slightly
outperforms the Double-MST in maximizing the Balance in
Workload Distribution among the robots.

VIII. FUTURE WORK
There are many challenging future research directions for

this problem, including:
1) Heterogeneity: In a coverage scenario, various forms of

heterogeneity can be allowed such as different motion or
sensing capabilities of the robots.

2) Open Systems: A new robot could be added to the
team during execution. To this end, the robots should
recalculate their paths so that the coverage mission could
incorporate the newly added robot.

3) Priority: In some applications, parts of the target area
should be visited or covered more often than others.

4) Robustness: There are many robustness criteria that need
to be dealt with in the real world, such as robot action
failure, communication failure, message loss, and the like.

5) Communication: The robots could have a limited range
of communication, meaning a message sent by a robot is
transmitted only to robots within a certain distance.

6) Uncertainty: Noisy sensors of the robots, action un-
certainty, unknown obstacles, and the like. can lead to
different challenging problems. In the case of noisy
sensors, the accuracy of the area information achieved
by a robot varies with the distance of the area from the
robot.

7) Dynamic Environments: The robot team should have
the ability to change its behavior over time in response
to a changing environment, with dynamic obstacles, ei-
ther to improve performance or to prevent unnecessary
degradation in performance.
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