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Abstract

Policy distillation in deep reinforcement learning transfers the
knowledge learned by a large teacher model to a compact stu-
dent model, which reduces the inference time and power con-
sumption. However, the compression ratio and the long train-
ing time are not always satisfactory. One promising approach
is for the teacher’s training and student’s distillation to occur
simultaneously, so that the latest learned policy is distilled
in real time. However, an intrinsic problem arises when the
teacher provides unstable supervision, as this may misdirect
the distillation process and lead to failure. Until now, only
few research works have addressed the problem of instability
and distillation performance. In this work, we propose a pol-
icy distillation mechanism that applies ensemble distillation
in a new way, which makes more high-quality and reliable
supervisions available for the student to realize full distilla-
tion. In addition, the validity of ensemble distillation has been
demonstrated for the improvement of generalization, which
enhances the student model’s robustness. We verify our al-
gorithm in the OpenAI Atari game domain. The results show
that the proposed approach achieves nearly full distillation
and even greater performance on some tasks.

Introduction
Deep reinforcement learning (DRL), as the combination
of reinforcement learning and deep neural networks has
demonstrated its potential in a variety of challenging tasks,
such as games (Mnih et al. 2015), navigation (Mirowski et
al. 2016), and manipulation (Lillicrap et al. 2015). However,
a DRL model is generally computationally expensive, which
impedes its application in capacity- and power-constrained
devices such as drones and cellphones. Policy distillation
proves to be an effective way to address this problem, where
a light-weight student model is trained under the supervi-
sion of a pre-trained teacher model to learn efficient policies
(Rusu et al. 2015; Parisotto, Ba, and Salakhutdinov 2015).
However, there are still unresolved problems in the exist-
ing approaches, such as prolonged training and distillation
time or inadequate distillation performance with very small
compression ratios. Policy distillation in real time is able to
reduce the time significantly by distilling the policy when
the teacher is training, but the effectiveness of the approach
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is diminished by the teacher’s unstable performance. Since
a student model is vulnerable to fluctuations in the teacher’s
supervision due to the student model’s relatively lower ap-
proximation ability, it is hard for the student to return to the
right track and learn the optimal policy once directed in a
wrong way. Until now, the underlying mechanism of this in-
stability and uncertainty in policy distillation has not been
explored widely.

To address the problem of unreliable teacher supervision
in policy distillation, we introduce an ensemble learning
method in which several teacher models generate more re-
liable supervision for the student under the mechanism of
real-time policy distillation (Sun and Fazli 2019). Ensemble
learning has previously shown its strength in other knowl-
edge distillation tasks (Asif, Tang, and Harrer 2019) and im-
proved robustness in adversarial cases (Shen et al. 2019) ad-
dressing the problems of overfitting and high variance. In ad-
dition, reverse KL divergence is specifically adopted in this
work to reduce the uncertainty in the teacher model. Com-
bining these two techniques, our results demonstrate that a
highly compressed student model is able to effectively mas-
ter teachers’ skills and even surpass these skills to some de-
gree.

In summary, the contributions of the work are as follows:

• We introduce an ensemble method for policy distillation
and verify its effectiveness in the OpenAI Atari game do-
main.

• We compare forward KL divergence and reverse KL di-
vergence and verify that the latter is a better match for
policy distillation in deep reinforcement learning.

Background
This work is based on one benchmark experiment DQN
(Deep Q-learning (Mnih et al. 2015)), where a teacher model
is constructed with two identical networks: a prediction net-
work and a target network. Existing policy distillation ap-
proaches usually involve two steps. In the first step, for the
training phase, a teacher model is trained to converge to an
optimal policy by minimizing the Bellman error recursively.
In this step, the i-th iteration is written as in Equation 1
(Mnih et al. 2015). For convenience of illustrating, we call it
a DQN loss.
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In the second step, for the distillation phase, the trained

teacher plays the game under the learned policy and collects
data for the student. Given the same data sampled from the
replay buffer, both teacher and student models are required
to output the confidence over all actions under individual
policy independently. The student uses only the prediction
network to minimize the distribution regression loss, such
as KL divergence, formulated in Equation 2:
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i ln(

p(T )
i
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where p(T )
i = softmax(
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i

τ ) and p(S)
i = softmax(

q(S)
i

τ ).
The terms q(T )

i and q(S)i are q-value vectors approximated
by the prediction network in the teacher model and the stu-
dent model, respectively. θ(S) represents weights in the stu-
dent model. The softmax function is used to obtain the nor-
malized confidence of the actions chosen. The temperature
τ measures how soft or hard targets should be to can convey
the most useful information.

Different from other approaches in the literature (Rusu et
al. 2015; Parisotto, Ba, and Salakhutdinov 2015), we use the
real-time policy distillation mechanism, where distillation
occurs during instead of after the teacher’s training. In other
words, the latest policy being learned by the teacher is trans-
ferred immediately to the student. The student is expected
to be smart enough to learn as quickly as possible, with no
time for hesitance or consolidation of previous knowledge.

Uncertainty Reduction via Reverse KL
Divergence

One commonly used distillation loss function is KL diver-
gence, also called forward KL divergence (FKL) as Equation
2. Its reverse form is reverse KL divergence (RKL). In this
paper, RKL is recommended instead of FKL due to the match
between the property of RKL and the traits of DRL, formu-
lated as Equation 3,

LRKL(θ(S)) = p(S)i ln(
p(S)
i

p(T )
i

). (3)

In analyzing the different properties of these two KL di-
vergence losses (Sun and Fazli 2019), one interesting obser-
vation (Kingma and Welling 2013; Doersch 2016) guides the
decision of which KL divergence is an ideal candidate. FKL
holds the zero-avoiding property (Malinin and Gales 2019),
in that it tends to allocate nonzero probability for each ac-
tion in the student model if the teacher’s output distribution
is indistinguishable. This confuses the student’s decision-
making. Specifically, in Equation 2, it is the teacher who

weights the term ln(
p(T )
i

p(S)
i

) by its confidence term p(T )
i to de-

termine the loss value. In contrast, RKL is zero-forcing, in

Figure 1: Construction of Replay Buffer via Multiple Teach-
ers

which the student weights the total KL loss via its confi-
dence p(S)i in Equation 3. This allows the student to ignore
the supervision and allocate zero or low probability for some
actions, as long as the student is very confident in taking one
certain action as the best one, and effectively prevents the
transfer of harmful knowledge from the teacher.

Since RL is learning without ground truth to select the
best action, the corresponding decisions are sensitive to
noise. From our observation, the confidences over all actions
are nearly equal in the early stages of the DQN training or
when the policy is degrading, accordingly, teachers’ super-
vision is informative and uncertain. In this case, FKL still
pushes the student to imitate the teacher’s decision as much
as possible, even if the student is holding better policy. Con-
sequently, the student’s policy will be overridden by force.
However, RKL authorizes autonomy to a student to make a
decision on its own and also reduces uncertainty via distil-
lation. Extremely, as the decomposition of RKL gradient in
the paper Real-time policy distillation (Sun and Fazli 2019),
a totally random supervision only contributes a constant in
gradient update, proportional to 1/N , N is the number of
optional actions.

Distillation from Ensemble Distribution
A noisy and weak RL model is easily driven to local op-
tima for various reasons, such as inappropriate model ini-
tialization, the learning rate schedule, and the amount of
positive knowledge contained in the sampled experience.
Therefore, the performance may fluctuate drastically during
training, and policy degradation may occur at different train-
ing points with different random seeds. This could result
in catastrophic guidance for the student in the framework
of real-time policy distillation, because undesirable supervi-
sion may totally reshape the student’s parameter landscape
and even override the student’s previous knowledge, which
is not recoverable for some tasks. Generally, the teacher
model is sufficiently flexible and more able to abandon a
sub-optimal policy and return to the right track than a student
because of the larger number of parameters and computing
redundancy. Lowering the risk of unreliable supervision as
a target for the student’s training is nontrivial in real-time



policy distillation to make full distillation.
Enlightened by the idea of ensemble learning (Zhang and

Wang 2016; Siddique, Alam, and Adeli 2019), we con-
structed ensemble teacher models in the training phase, with
the purpose of shrinking the performance variance and gen-
erating consensus among teachers. Before discussing our
implementation details, the arrangement of these teachers
to collect data should be noted. Specifically, we must de-
termine which teacher’s experience should be stored into
the replay buffer, an important component that improves
data reusability and prevents oscillation in a convergence
scenario by sampling with uniform probability in the orig-
inal DQN. Nair et al. (2015) introduced multiple actors in-
teracting independently on different servers to explore the
state space widely from different paths. They constructed
a merged replay buffer to force the agent to confront di-
verse situations by learning from all actors’ demonstrations
in the early stages, which also enhanced its robustness. For
simplicity in our case, all teachers are built up in the same
network, play in a single game, and make decisions alter-
nately. The teachers’ experiences are stored in the same re-
play buffer with equal opportunity. Figure 1 depicts how we
organize the sequence of multiple teachers’ interactions with
the environment for each playing turn. Only one of the teach-
ers is required to output the best action and store the corre-
sponding experience into the replay buffer at each step. Dur-
ing the training time, the sampled data is fed into all mod-
els, and all teachers optimize policy using gradient descent
in the DQN loss. Meanwhile, the student updates the policy
via distribution regression by minimizing the following loss,

LEnsemble(θ(S)) =
M∑
j=1

p(S)i ln(
p(S)i

p(Tj)
i

), (4)

where M is the number of teacher models. The pseduocode
for the procedure is shown in Algorithm 1. The experience
data sampled from the replay buffer is denoted asDreplay =
{si, ai, ri, si+1}, and a distillation dataset is constructed for
the student, denoted as Ddistill = {Dreplay, p

(T1:M )
i }.

The second part p(T1:M )
i represents the set of output distri-

butions derived from the ensemble models.
There are two benefits from the alternate decision-

making. First, each teacher gets a chance to learn from
the others’ demonstrations, which is helpful for correcting
the policy bias to some extent, especially when the teacher
model is misled to local optima. Second, it is less likely for
all teacher models to fall into local optima at the same time.
Thus, even if one teacher undergoes poor policy and its col-
lected data contain negative knowledge, this situation is mit-
igated by other teachers’ data, and the risk of too much un-
successful experience in the replay buffer is reduced.

Some existing ensemble distillation methods (Kuncoro et
al. 2016) train an extra component voting by weighting each
teacher’s KL loss to select the best predictions that further
improve the supervision quality. In our approach, RKL nat-
urally retains the attribute of voting, even though it uses a
simple averaging operation to obtain a synthesized opinion.
The reason is that, if one teacher model is playing under

Algorithm 1 Ensemble Policy Distillation
M : number of teachers
I: number of total iterations
C: update frequency of target network

1: Initialize replay buffer Dreplay .
2: Initialize the teacher models and the student model with

random weights for both the prediction and target net-
works.

3: while 1 < i < I do
4: for j = 1,M do
5: Teacher j interacts with environment and stores

experience into replay buffer;
6: Data is randomly sampled from replay buffer

Dreplay and feed into all models;
7: Teachers update weights θ(T1:M ) according to

DQN loss function computation in Equation 1;
8: Distillation training set Ddistill is constructed;
9: Student updates weights θ(S) according to RKL

loss function computation as equation 4;
10: Weights from prediction network are copied to

target network every C steps.
11: end for
12: i← i+M
13: end while=0

an undesirable policy and outputs more random predictions,
then the proportion of RKL loss between it and the student
model will be bound by the student’s weight, which lowers
that teacher’s contribution to the final opinion. In contrast, if
only the student is stuck in local optima, it will accept super-
vision from teachers by weighting with its equal weighting
term; thus, its learning will be corrected immediately. In the
extreme case, if both student and teacher models make uni-
formly random decisions, the RKL loss between them would
remain relatively constant, causing no contributions to loss
minimization.

Experiment Setup
To assess the performance of the proposed distillation ap-
proach, we selected seven games (Rusu et al. 2015) from
the Atari domain. There is one teacher model with size
Teacher={32, 64, 64, 512}, one student model (Rusu et al.
2015) student1={16, 16, 16, 64}, and one smaller student
model student2={8, 8, 16, 64}. The first three numbers rep-
resent the number of filters in the convolutional layers, and
the last is the number of neurons in the fully-connected layer.
The students’ corresponding compression ratios with respect
to the total number of parameters are 3.7% and 1.7% respec-
tively. We followed the training and evaluation settings in
the original DQN (Mnih et al. 2015), introducing 30 random
actions in the beginning of each episode, evaluating every
single epoch by playing up to 30 episodes. In our training
phase, all models were trained for 80 epochs (250, 000 steps
per epoch), and evaluated sequentially. The temperature in
softmax was uniformly set to 0.1 as one appropriate hyper-
parameter for most games to sharpen the targets from the en-
semble from our empirical study, it is potentially optimized



Table 1: Distillation results for “Student1”. PD: Policy Distillation (Rusu et al. 2015); Single: with only one teacher’s supervi-
sion; Ensemble: proposed method with 3 teacher models; FKL: forward KL divergence; RKL: reverse KL divergence; Note:
in the case of ensemble, the average of teachers’ scores is used to compute the percentage.

PD Single-RKL Ensemble-FKL Ensemble-FKL
% Score Percentage Score Percentage Score Percentage

Max Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean

Pong 96.9 14.0 11.8 106.8 96.5 15.3 14.1 113.8 110.5 14.9 13.8 110.3 108.4
Breakout 78.6 31.5 16.2 128.7 105.1 29.2 16.0 162.4 122.7 21.7 14.8 120.6 112.8
Enduro 117.1 419 288 104.8 102.7 354 317 130.8 200.7 371 316 132.6 200.0
Ms.Pacman 96.2 1553 303 98.1 32.0 1497 1041 153.4 108.5 1116 936 128.5 97.8
Qbert 107.9 1150 698 89.7 71.5 4614 3295 129.7 110.2 4093 3069 115.1 95.7
Seaquest 137.4 1805 1498 103.2 103.5 1934 1682 134.5 135.5 1884 1570 132.3 126.5
Riverraid 84.1 3700 2867 106.0 97.6 4584 4142 120.9 114.8 4202 3732 110.9 103.5
BeamRider 75.4 771 554 79.3 85.5 885 698 121.7 474.6 774 718 89.0 467.9

Table 2: Distillation results for “Student2”; Single: with only one teacher’s supervision; Ensemble: proposed method with 3
teacher models; FKL: forward KL divergence; RKL: reverse KL divergence; Note: in the case of ensemble, the average of
teachers’ scores is used to compute the percentage.

Single-RKL Ensemble-FKL Ensemble-FKL
Score Percentage Score Percentage Score Percentage

Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean

Pong 13.6 12.3 101.3 100.9 15.5 13.8 112.4 108.6 15.4 13.3 109.5 104.5
Breakout 25.5 15.9 104.0 103.3 23.0 14.9 128.2 112.8 21.5 14.6 119.5 113.8
Enduro 407 383 101.8 101.7 382 313 136.9 197.8 359 301 131.2 189.9
Ms.Pacman 1830 1103 115.6 101.0 1339 1057 126.9 109.8 1299 930 120.5 97.8
Qbert 1405 1064 109.0 110.4 4418 3649 124.2 119.1 4359 3037 122.6 97.6
Seaquest 1872 1514 107.1 104.2 1980 1663 136.1 133.8 1934 1558 132.1 125.2
Riverraid 3164 2604 90.6 97.6 4311 3999 116.4 110.9 4279 3855 112.9 106.8
BeamRider 772 695 79.5 120.8 716 686 88.6 467.5 747 712 91.2 453.2

depending on the characteristics of the games. For instance,
action-aware games such as Pong require harder targets by
setting a smaller τ . The teachers’ learning rate is the same
as in DQN, but the student’s learning rate is slightly higher
to enable it react quickly in the distillation operation. An
ε-greedy exploration strategy is kept with the value of 5%
for all ensemble models in total. We construct three teacher
models uniformly for all games, and more teacher models
are suggested if the policy learning is extremely noisy.

To demonstrate the advantage in terms of distillation ef-
fectiveness and efficiency in a fair manner, we took the dis-
tillation performance of Net3 in (Rusu et al. 2015) as the
benchmark. However, we emphasize that our algorithm is
based on real-time policy distillation, so whether the student
is able to keep up with teachers’ learning makes more sense,
and the mean scores of the last 10 epochs are calculated for
comparison. To assess the overall performance of the ensem-
ble method, we average the scores of the teacher models and
then compute the maximum and mean scores. We also eval-
uate the student’s distillation performance by the percentage
of teacher’s score or averaged teachers’ scores in the ensem-

ble method.

Results and Analysis
In Table 1 and Table 2, we present the summary of our dis-
tillation performance results, including the comparison of
RKL and FKL and the comparison of a single model and
ensemble models. The bold numbers show the best values
among all the approaches. It is seen that the ensemble dis-
tillation is more advantageous than distillation with a sin-
gle teacher model overall with respect to the percentage of
maximum and mean values, and this advantage is enhanced
more with RKL compared to FKL. In Table 1, Single-RKL
is able to achieve competitive distillation performance as
PD. The ensemble method guarantees even higher and more
stable distillation performance. With respect to student’s
maximum and mean scores, both “Single” and “Ensemble”
demonstrate similar performances. This is because if a high-
performing teacher is available for the single model, the stu-
dent is likely to learn a good policy during the training pe-
riod. On the other hand, in the ensemble method, distillation
performance might be affected by the worst teacher’s super-



vision at first glance, but the student model still exhibits a
more stable performance. Figures 3-11 show the learning
curves for the ensemble distillation methods for student1
and student2. We observe that in those tasks with signifi-
cant learning fluctuations, like Breakout, Ms.Pacman, and
BeamRider, RKL truly helps students to resit against the un-
certainty from teachers’ supervision, insisting on their own
opinions once they have consolidated the learned policy.

Robustness under Unstable Supervision
For better visualization of how robust ensemble policy dis-
tillation is to unstable supervision, we take two experiment
runs for Seaquest, as the results shown in Figure 2. A lit-
tle difference between the two implementations with respect
to policy optimization. The experiment setup for the right
figure is with the technique of clip, which sets the upper
bound of gradients update. This does not fit Seaquest learn-
ing, therefore leads to performance collapse in Teacher3.
The left figure shows relatively stable teachers’ learning, be-
cause clip is removed. The comparison of the two set of
plots proves that ensemble model make the distillation ro-
bust to the risk of teacher’s supervision degradation. In other
words, even if one teacher makes secure mistakes, its corre-
sponding effect via supervision would be lessened. From our
empirical study, a bad teacher behaves more randomly in de-
cision making, which is reflected in its uniform-like proba-
bility distribution, providing less informative supervision to
student about how to adjust parameters update comparing to
stable teachers.

Conclusion and Future Work
We introduced an ensemble method for policy distillation,
which guarantees relatively stable targets for the student
model and makes data more diverse, thus improving the
overall distillation performance. Additionally, we analyzed
different properties of RKL and FKL as distillation losses
and demonstrated the advantage of RKL in the Atari do-
main. By applying these two techniques, the compression
ratio was decreased significantly with mostly full distilla-
tion on most games. Our proposed method can be applied to
other scenarios, for instance, in the multi-agent training task.
Our distillation method is able to assist a student in learning
from multiple agents who are executing the same task but
in different ways in real time, which automatically helps to
mitigate negative policy. The method also probably exhibits
more strength when data or experience is sparse, which is
important if it is allowed only a few times to accomplish
missions in the real world. One possible area of future work
is making a student model learn similar tasks from multiple
agents.
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Figure 2: Comparison of distillation performance with stable vs. unstable supervision. T1: Teacher1, T2: Teacher2, T3:
Teacher3, RKL: reverse KL divergence, FKL: forward KL divergence.

Figure 3: Learning Curves of Pong. Left figure: student1; Right figure: student2. T-average: Teachers average score, RKL:
reverse KL divergence, FKL: forward KL divergence.

Figure 4: Learning Curves of Breakout. Left figure: student1; Right figure: student2. T-average: Teachers average score, RKL:
reverse KL divergence, FKL: forward KL divergence.



Figure 5: Learning Curves of Enduro. Left figure: student1; Right figure: student2. T-average: Teachers average score, RKL:
reverse KL divergence, FKL: forward KL divergence.

Figure 6: Learning Curves of Qbert. Left figure: student1; Right figure: student2. T-average: Teachers average score, RKL:
reverse KL divergence, FKL: forward KL divergence.

Figure 7: Learning Curves of Qbert. Left figure: student1; Right figure: student2. T-average: Teachers average score, RKL:
reverse KL divergence, FKL: forward KL divergence.



Figure 8: Learning Curves of Seaquest. Left figure: student1; Right figure: student2. T-average: Teachers average score, RKL:
reverse KL divergence, FKL: forward KL divergence.

Figure 9: Learning Curves of Riverraid. Left: Student1; Right: Student2. T1: Teacher1, T2: Teacher2, T3: Teacher3, S1:
Student1, S2: Student2, RKL: reverse KL divergence, FKL: forward KL divergence.

Figure 10: Learning Curves of BeamRider. Left figure: student1; Right figure: student2. T-average: Teachers average score,
RKL: reverse KL divergence, FKL: forward KL divergence.



Figure 11: Learning Curves of Crazy-Climber. Left figure: student1; Right figure: student2. T-average: Teachers average score,
RKL: reverse KL divergence, FKL: forward KL divergence.


