
Decentralized Multi-Robot Task Allocation with
Time Window and Ordering Constraints

Elina Suslova and Pooyan Fazli

Abstract— The multi-robot task allocation problem comprises
task assignment, coalition formation, task scheduling, and rout-
ing. We propose a distributed constraint optimization formalism
to allocate tasks to a team of robots. The tasks have time window
and ordering constraints. Each robot creates a simple temporal
network to maintain the tasks in its schedule. The proposed
algorithm forms efficient coalitions among robots to accomplish
the tasks more efficiently as a result of their collective abilities.
We conduct extensive experiments to assess the performance of
the proposed algorithm and compare it against a benchmark
auction-based approach. The results show that our algorithm
completes more tasks in 100% of the settings, increases the
task completion rate and task completion frequency by 3.3%
and 5.4%, respectively, and reduces the task execution time by
37.7% on average.

I. INTRODUCTION

Multi-robot systems provide robust, flexible, and efficient
solutions for tackling real-world applications, such as search
and rescue [1], patrol and monitoring [2], and distributed
servicing tasks [3]. Multi-robot task allocation (MRTA) is a
challenging problem that involves task allocation, coalition
formation, task scheduling, and routing. MRTA aims to recruit
the best single or multiple robots to accomplish the tasks
while maximizing performance. In variants of the MRTA
problem, limitations are imposed on both robots and tasks,
such as capability; capacity; and temporal, spatial, hard, and
soft constraints. Constraints reduce the possible solution set
for the task allocation problem. The goal of this work is to
address the MRTA problem with time window and ordering
constraints on the tasks.

Tasks and robots are spatially distributed in the environ-
ment. In order to complete as many tasks as possible while
satisfying their time window and ordering constraints, each
robot must be provided with a schedule to complete the
maximum number of tasks in the minimum time. Moreover,
by forming teams or coalitions, robots can achieve such tasks
more efficiently as a result of their collective abilities.

There are various reasons for forming coalitions among
robots to complete the tasks [1]. First, the task workload
may be high, so a single robot may not be able to perform
the given task within the specified time window. Second,
coalition among robots leads to faster completion of tasks;
therefore, the robots will have enough time to attempt other
tasks in the environment. Third, the travel distance to the
task may be too long for a single robot to reach the task in
time and complete it individually within the specified time

Elina Suslova and Pooyan Fazli are with the Department of Computer
Science, San Francisco State University, San Francisco, CA 94132, USA
{esuslova,pooyan}@sfsu.edu

window. Hence, it is critical that the processes of coalition
formation are managed effectively among robots.

The distributed constraint optimization problem (DCOP)
is a powerful framework for modeling many real-world
problems involving collaborative multi-agent systems [4]. In
DCOP, agents coordinate through local communication to
choose values in a decentralized manner that optimize the
team’s global objective function. Despite the vast literature
on DCOP, we are unaware of any work that has extended
these models to handle tasks with time window and ordering
constraints. Thus, the contributions of the paper are as
follows:
• We present the first DCOP formulation of the multi-robot

task allocation problem with time window and ordering
constraints.

• The proposed DCOP framework facilitates coalition for-
mation among robots to maximize the task completion
rate and frequency while minimizing the average task
execution time.

• We empirically evaluate the performance of the pro-
posed DCOP framework against a benchmark auction-
based method and show that our algorithm completes
more tasks in 100% of the settings, increases the task
completion rate and task completion frequency by 3.3%
and 5.4%, respectively, and reduces the task execution
time by 37.7% on average.

II. BACKGROUND AND STATE OF THE ART

Centralized approaches [5] are able to find optimal solu-
tions for the MRTA problem. However, MRTA is an NP-hard
problem, and as the number of robots or tasks increases, the
problem becomes intractable. For this reason, approximated
or greedy methods [6] are used extensively to solve the
MRTA problem. Centralized methods suffer from a single
point of failure, poor scalability, and need to generate a new
global solution every time the attributes of the environment,
tasks, and robots change. On the other hand, decentralized
approaches are more robust to unreliable communication and
robot failures and can repair the solution locally, however,
they do not guarantee optimality. Below, we will discuss the
two common classes of decentralized methods addressing the
MRTA problem.

A. Market-based Approaches

Market- and auction-based approaches [7] are popular
methods for distributed task allocation in multi-robot sys-
tems. An auctioneer announces a task, and each robot uses
its local information to compute a bid, which is an estimate

of the robot’s expected cost or utility of performing the task.
The auctioneer collects the bids and selects the winning robot
that will be responsible for executing the task. McIntire et
al. [8] introduced an iterated sequential single-item auction
algorithm to allocate tasks with ordering constraints. Nunes
et al. [9] extended the previous work to accommodate tasks
with both time window and ordering constraints. Despite the
vast literature on market-based approaches, we are unaware
of any work that has extended these methods to integrate
coalition formation to handle the task allocation problem
with time window and ordering constraints.

B. DCOP-based Approaches

DCOP algorithms rely on local message passing between
robots to find solutions but do not, to our knowledge,
currently handle tasks with time window and ordering con-
straints. Farinelli et al. [10] used the DCOP framework and
the max-sum algorithm to coordinate low-power embedded
devices in a decentralized manner. Ramchurn et al. [1] used
DCOP for task allocation in the search and rescue domain.
They introduced fast max-sum, which is a more efficient
and robust variation of the max-sum algorithm, to solve
the task allocation problem and facilitate coalition formation
among various types of agents: ambulance, fire brigade, and
police agents. As with a real-world disaster scenario, tasks
have deadlines and are spatially distributed, and agents must
synchronize their arrival time at victim locations. In addition,
previous work [11] improved the DCOP model to reduce
the communication overhead among the agents in the rescue
domain.

III. PROBLEM STATEMENT

Let R = {r1, r2, ..., r|R|} be a finite set of robots and
K = {k1, k2, ..., k|K|} be a finite set of tasks with time win-
dow and ordering constraints. The time window constraint
specifies the time interval within which a task needs to be
performed. In particular, the time window determines the
earliest start time (EST) and the latest finish time (LFT) of
the task. For example, suppose a task must be performed
between 9:00 am and 2:00 pm. Each task may have one
or more predecessor and successor tasks. More precisely,
executing a task is possible only if all the predecessor tasks
are completed first. ki ≺ kj denotes that ki precedes kj , or
ki must be completed before any robot can start executing
kj . Each task has a location (L) associated with it, and a
robot must be present at the location to execute the task. The
initial locations of robots and tasks are chosen randomly on
the map. Moreover, each task has a duration (D) and a type
(τ). Each robot can perform only one task at a time, and
robots are heterogeneous in the sense that each robot can
execute only predefined types of tasks. Robots can perform
each task individually or form teams or coalitions. When
multiple robots Cki ⊆ R collaborate on one task ki, the
task duration Dki is divided by the number of robots, Dki

|Cki
| ,

and robots in the coalition contribute to the task equally.
Furthermore, robots in a coalition do not have to work on
a task simultaneously; they are allowed to perform the task

partially and then move to the next allocated task, leaving
the rest to other robots in the coalition.

In brief, there are tasks in the environment whose loca-
tions, durations, types, time windows, and orders are given
to the set of robots. Each robot’s duty is to go to its allocated
task’s location, perform the task completely or partially, and
then move to the next assigned task on the map. Tasks are
allocated and scheduled before the execution is started.

In order to assess the performance of the algorithms,
we define three evaluation metrics: 1) task completion rate
(TCR), 2) task completion frequency (TCF), and 3) average
task execution time (ATET). The evaluation metrics are
defined as below:

1) TCR = |K̂|
|K| × 100,

2) TCF = |K̂|
m ,

3) ATET = 1
|K|

|K|∑
i=1

ETki ,

where |K̂| is the number of completed tasks, |K| is the total
number of tasks, m or makespan is the latest finish time
of the last task, and ETki is the execution time of task
ki. We believe that TCF is a better metric than makespan
to assess the performance in the MRTA problem because
different solutions do not always complete an equal number
of tasks. One algorithm may schedule and complete more
tasks, resulting in a higher makespan, and another algorithm
may complete fewer tasks, resulting in a lower makespan.
The goal is to maximize the task completion rate (TCR) and
task completion frequency (TCF) and minimize the average
task execution time (ATET).

IV. PROPOSED APPROACH

We present an approach to form coalitions of robots
to accomplish a set of tasks that are constrained by time
windows and have dependencies with other tasks. The overall
scheme of the approach is shown in Figures 1–4.

A. Precedence Graph

Tasks K are given to the set of robots R through a
precedence graph. The precedence graph GP = (K, EP) is
a directed acyclic graph (DAG) with nodes K corresponding
to tasks and edges EP representing the ordering constraints
between the tasks. A directed edge eij ∈ EP indicates that
task ki should be completed before performing task kj or in
other words ki ≺ kj . Figure 1 shows a sample precedence
graph with eight tasks. The precedence graph is divided into
layers, such that there is no ordering constraint between the
tasks in each layer. Hence, each layer contains a set of tasks
that can be executed independently. Initially, tasks in the first
layer are allocated through the DCOP formulation detailed in
the next section. After assigning the tasks in the first layer,
they are removed from the precedence graph, and the tasks
in the next layer are allocated. This process continues until
all the tasks in the precedence graph are assigned.

Task 1
D=4

EST=1 LFT=10

Task 2
D=12

EST=0 LFT=8

Task 3
D=2

EST=4 LFT=13

Task 4
D=2

EST=3 LFT=13

Task 5
D=4

EST=4 LFT=12

Task 6
D=8

EST=3 LFT=15

Task 7
D=2

EST=7 LFT=17

Task 8
D=5

EST=2 LFT=18

Layer 1 Layer 2 Layer 3

Fig. 1: Precedence graph. Each box represents a task
with ID, earliest start time (EST), latest finish time (LFT),
and duration (D). Edges show the ordering constraints.

x1

x2

x3

x4

f1

f2

f3

x1

x2

x3

x4

f4

f5

f6

x1

x2

x3

x4

f7

f8

1st Layer Factor Graph 2nd Layer Factor Graph 3rd Layer Factor Graph

Fig. 2: Factor graphs. The variable nodes X represent the
robots R (shown by circles), and the function nodes F
represent the tasks K (shown by squares).

ST1 FT1
D = 2

[1,8] [3,10]

ST5 FT5
D = 2

[4,10] [6,12]

ST4 FT4
D = 2

[3,11] [5,13]

ST4 FT4
D = 2

[3,11] [5,13]

ST5 FT5
D = 2

[4,10] [6,12]

ST7 FT7
D = 2

[7,15] [9,17]

Layer 1 Layer 2 Layer 3

TT
 =

3

TT = 6

TT = 1

TT = 1

TT = 2

TT =
7

ST4 FT4

ST5 FT5ST4 FT4

ST5 FT5

FT1ST1 ST7 ST7

Fig. 3: The simple temporal network (STN) formation for robot 2. The STN contains the time points (ST: start time, FT:
finish time), duration (D), travel time (TT), and time window and ordering constraints of the four tasks assigned to robot 2.
Task 1 is executed, and then there is a choice of completing task 4 or task 5 first. Task 7 is done at the end of the schedule.

r1

r2

r3

r4

k1

k1

k3

k2

k2

Layer 1

Time

r1

r2

r3

r4

k1

k1

k3

k2

k2

Layers 1 and 2

k6

k5 k4

k5

k6

Time

r1

r2

r3

r4

0 5 10 15

k1

k1

k3

k2

k2

Layers 1, 2, and 3

k6

k5 k4

k5

k6

k7

k8

Time
0 5 10 150 5 10 15

Fig. 4: Final schedules for robot 1 to 4. R is the set of robots, and K is the set of tasks.

B. Distributed Constraint Optimization Problem

Distributed constraint optimization (DCOP) provides a
powerful framework to model multi-robot collaboration and
coordination problems. DCOP generalizes the distributed con-
straint satisfaction problem (DisCSP). In DisCSP, the con-
straints are all hard, meaning that the solution must satisfy
all of them. However, real-world problems often contain
soft constraints too, which need to be satisfied as much as
possible. DCOP handles both types of constraints.

A distributed constraint optimization problem (DCOP) is

formally defined by a tuple 〈R,X ,D,F〉, where:
• R = {r1, . . . , r|R|} is a finite set of robots.
• X = {x1, . . . , x|X |} is a finite set of variables, where
|X | = |R| in our problem.

• D = {Dx1
, . . . ,Dx|X|} is a set of finite domains for the

variables in X , with Dxi
being the domain of variable

xi.
• F = {f1, . . . , f|F|} is a finite set of cost functions,

where |F| = |K| in our problem. Each cost function
is defined over a set of variables: fi :

∏
x∈Xfi

Dx →

R+
0 ∪ {+∞}, where infeasible assignments have +∞

utility and Xfi ⊆ X .
To follow the DCOP formulation, each variable xi ∈ X is

assigned to a robot ri ∈ R, who has the sole responsibility
for the variable’s value. In our problem, each robot controls
exactly one variable. The domain Dxi of each variable xi
consists of the tasks that the corresponding robot ri is
capable of doing. Each task kj is represented as a cost
function fj . The function fj shows the cost of accomplishing
the corresponding task with different numbers of robots
Ckj ⊆ R, from no robot to the coalition of all the robots
capable of doing task kj . Each robot knows only about
the functions in which it is involved. We compute the cost
function fj for task kj as follows:

fj = α× max
ri∈Ckj

(m(ri, kj))+

(1− α)×
∑
ri∈Ckj

tt(Lri , Lkj),
(1)

where m(ri, kj) is the latest finish time of the last task in
robot ri’s schedule if task kj were to be assigned to the
robot, tt(Lri , Lkj) is the time it takes for robot ri to travel
from its current location to task kj’s location, and α is a
hyperparameter set to 0.7 in our experiments. The objective
is to find a complete value assignment for the variables of
X (denoted by x) that minimizes the following global cost
function:

x∗ = argmin
x

|F|∑
j=1

fj(xfj), (2)

where xfj is the partial value assignment for the variables
of Xfi ⊆ X .

C. DCOP Representation: Factor Graph

There are different ways to represent a DCOP problem.
The factor graph [12] is a bipartite cyclic graph chosen to
represent the problem. In the factor graph Gϕ = (X+F , Eϕ),
the variable nodes X represent the robots (shown by circles
in Figure 2), and the function nodes F represent the tasks
(shown by squares in Figure 2). An undirected edge eij ∈ Eϕ
between a variable node xi and a function node fj indicates
that robot ri is capable of performing task kj . Each robot
has a local view of the factor graph that includes only its
immediate neighbors. Figure 2 shows three factor graphs for
the three layers of the precedence graph in Figure 1.

D. Solving DCOP: Max-Sum Algorithm

Solving DCOP exactly is NP-hard [13], and for this reason
approximate methods such as max-sum [10] are used to solve
the optimization problem. The max-sum algorithm is an
incomplete inference-based method that iteratively performs
message passing on the factor graph corresponding to the
DCOP. In each iteration, every variable node sends messages
to all the function nodes that it connects to (Equation 3), and
every function node sends messages to all the variable nodes
that it is connected to in the graph (Equation 4).

• The message from variable xi to function fj is

qi→j(xi) = βij +
∑

k∈Mi\j

sk→i(xi), (3)

where qi→j is the message sent from variable node xi
to function node fj , βij is a scalar chosen such that∑
xi
qi→j(xi) = 0, and Mi is the set of indices of all

the function nodes connected to variable node xi in
the factor graph.

• The message from function fj to variable xi is

sj→i(xi) = min
xfj
\i
[fj(xfj) +

∑
k∈Nj\i

qk→j(xk)], (4)

where sj→i is the message sent from function node
fj to variable node xi, Nj is the set of indices of all
the variable nodes connected to function node fj , and
xfj\i ≡ {xk | k ∈ Nj \ i}.

This process continues until the messages converge or a
fixed number of iterations is reached. Each robot ri then
selects the best task by aggregating the cost values received
from its neighboring robots through the adjacent function
nodes:

x∗i = argmin
xi

∑
j∈Mi

sj→i(xi). (5)

It may be the case that there are more tasks than robots in
a layer of the precedence graph, or a task is not assigned to
any robot. The max-sum algorithm is run on each layer for a
fixed number of iterations so that all the tasks in the layer are
processed. The algorithm processes and allocates the tasks
in the precedence graph layer by layer. Max-sum has a time
complexity of O(dl) [4], where d = maxDxi

∈D |Dxi
| is the

size of the largest domain (i.e., the largest number of tasks
a robot may perform), and l = maxri∈R |Nri | is the largest
number of neighboring robots.

E. Managing Schedules: Simple Temporal Networks

To maintain a schedule for the tasks, each robot creates
a simple temporal network (STN) [14]. An STN is a graph
Gσ = (T , Eσ) in which nodes represent the start time (ST)
or finish time (FT) of the tasks, and edges show the duration
(D) of a task or travel time (TT) between two tasks. The
start time of a task ki should be scheduled in the interval
[ESTki , LFTki−

Dki

|Cki
|], and the finish time should be scheduled

in the interval [ESTki +
Dki

|Cki
| , LFTki].

Each robot ri uses its STN to calculate the cost of a task
kj if the task were to be assigned to the robot. The robot’s
corresponding variable node xi uses this value to initiate the
message with the function node fj :

α×m(ri, kj) + (1− α)× tt(Lri , Lkj). (6)

Whenever a new task is assigned to a robot, the robot
checks every possible position in its STN and inserts the task
at the position that keeps the network consistent and leads to

the lowest makespan. To find a solution and a valid schedule
for the STN, all the tasks should be assigned start-time and
finish-time points that fulfill all their time window, ordering,
and travel constraints. The Floyd-Warshall algorithm is used
to solve the STN in O(n3) polynomial time, where n is the
number of time points in the network. Figure 3 demonstrates
the gradual formation of the complete STN for robot 2 for
the sample precedence graph of Figure 1. Figure 4 shows the
final schedule for each robot after solving their associated
STNs.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We generate random precedence graphs using the method
presented by Melancon et al. [15]. The map used in the
experiments is a 100 × 100 grid in a 2D coordinate plane.
We set our scheduling time frame (TF) based on the number
of tasks in the environment. The time frame determines that
all the scheduled tasks must be completed within a fixed
number of steps (e.g., 5000 steps). Tasks are generated with
a set of parameters, including location (L), time duration
(D), earliest start time (EST), latest finish time (LFT), and
type (τ). The time percentile (TP) detailed below determines
the EST of a task in the scheduling time frame. Tasks are
distributed randomly throughout the map. For each task, the
time duration is sampled uniformly from the integer interval
[100, 1000]. The EST and LFT of each task are sampled
uniformly from the following intervals:

EST = [0, TF × TP], (7)

LFT = min(EST + D + rand(0, TF), TF), (8)

where rand(0, TF) generates a random integer between 0
and the set time frame. The LFT is assigned the cap value of
time frame if the generated finished time exceeds the time
frame.

We define three different time percentiles for the EST
of tasks. In the first case, we assign the EST of all tasks
to be scheduled within the initial 25% of the scheduling
time frame. This setting provides the most flexible time
window constraints, giving sufficient time for each task to
be performed and allowing robots to schedule and complete
more tasks. In the second case, we assign the EST of all
tasks to be within the initial 50% of the scheduling time
frame. This setting provides more restricted time window
constraints for the robots compared to the previous case. In
the third case, we assign the EST of all tasks to be within the
initial 75% of the scheduling time frame. Using this setting,
robots face the most restricted temporal constraints for the
tasks.

We define two types of tasks in the environment and
randomly assign a type to each task to identify whether
the task can be performed by a certain robot. Each robot
is randomly assigned to perform one of the two types of
tasks or both. We make sure that there is at least one
robot for each type of task. Our experiments also examine

another parameter, the number of robots involved in the
MRTA problem. For each experiment, we use 4, 6, or 8 robots
to complete the tasks. In addition, we consider a different
number of tasks, i.e., 50, 100, and 200 in the experiments.
We set the scheduling time frame for 50 tasks to 5000 steps,
for 100 tasks to 7500 steps, and for 200 tasks to 10000 steps.

In summary, we conducted the experiments with the
following settings:
• number of robots: 4, 6, and 8
• number of precedence graphs per setting: 25
• number of tasks per precedence graph: 50, 100, and 200
• scheduling time frame: 5000, 7500, and 10000 steps
• EST percentile of the tasks: 25%, 50%, and 75%
• task duration: [100, 1000]
We compared our proposed DCOP algorithm with an

auction-based approach from the literature called prioritized
iterated auction (PIA) [8], [9]. PIA handles both time window
and ordering constraints imposed on the tasks, but can only
be used in non-coalition scenarios. Ours is the first work to
extend coalition formation to handle tasks with time window
and ordering constraints.

B. Results

We conducted extensive experiments to assess the per-
formance of the proposed algorithm. Tables I, II, and III
show the results of the experiments under different settings,
averaged over 25 randomly generated precedence graphs.

Overall, DCOP allocated more tasks compared to PIA in
100% of the settings, increasing the task completion rate
(TCR) by 3.3% on average. Moreover, DCOP outperformed
PIA under task completion frequency (TCF) in 100% of the
cases, increasing the TCF by 5.4% on average. The formation
of coalitions in DCOP reduced the average task execution
time (ATET) compared to PIA by 37.7% on average, and
DCOP outperformed PIA under this metric in 100% of the
settings.

In addition, we examined the earliest start time (EST)
parameter in the experiments. If the EST of tasks is scheduled
early (i.e., within the initial 25% of the scheduling time
frame), the time window of the tasks will be longer and more
flexible on average. Hence, robots schedule and complete
more tasks in this setting. When the EST of tasks is assigned
to be in the later percentiles of the scheduling time frame
(50% and 75%), the time window will be shorter and
less flexible on average. Under these settings, it is more
challenging for robots to schedule and complete the tasks.

VI. CONCLUSION AND FUTURE WORK

We presented the first DCOP formulation of the multi-
robot task allocation problem with time window and ordering
constraints. The proposed method forms efficient coalitions
among robots to maximize the task completion rate and
frequency while minimizing the task execution time. The
method outperforms an auction-based approach under differ-
ent evaluation metrics. For future work, we plan to extend
this work in various directions:

of Tasks # of Robots DCOP (TCR) PIA (TCR) DCOP (TCF) PIA (TCF) DCOP (ATET) PIA (ATET)
50 4 65.52 62.00 0.166 0.158 367 519
50 6 85.92 83.04 0.219 0.211 294 554
50 8 95.20 93.28 0.251 0.249 237 571

100 4 52.28 48.08 0.175 0.162 403 535
100 6 72.20 66.20 0.242 0.223 336 567
100 8 88.16 83.00 0.296 0.285 275 581
200 4 37.96 32.84 0.190 0.165 387 541
200 6 53.74 48.60 0.269 0.244 337 544
200 8 68.52 63.70 0.343 0.319 302 552

TABLE I: Results for tasks with EST within the first 25% of the scheduling time frame.

of Tasks # of Robots DCOP (TCR) PIA (TCR) DCOP (TCF) PIA (TCF) DCOP (ATET) PIA (ATET)
50 4 64.80 61.44 0.163 0.155 392 502
50 6 84.64 81.52 0.215 0.207 309 533
50 8 93.84 92.08 0.240 0.239 254 552

100 4 50.28 45.64 0.168 0.153 411 549
100 6 69.76 63.84 0.233 0.214 338 571
100 8 85.52 81.20 0.286 0.273 297 574
200 4 37.86 34.86 0.190 0.175 383 496
200 6 52.24 49.90 0.262 0.250 342 503
200 8 65.04 63.34 0.326 0.318 297 529

TABLE II: Results for tasks with EST within the first 50% of the scheduling time frame.

of Tasks # of Robots DCOP (TCR) PIA (TCR) DCOP (TCF) PIA (TCF) DCOP (ATET) PIA (ATET)
50 4 63.68 60.08 0.161 0.152 369 510
50 6 84.96 80.72 0.215 0.204 252 468
50 8 88.96 88.56 0.225 0.224 238 515

100 4 50.52 48.12 0.169 0.161 411 521
100 6 68.36 65.56 0.229 0.220 342 551
100 8 82.40 81.08 0.275 0.271 259 495
200 4 35.84 33.58 0.179 0.168 441 510
200 6 49.76 48.08 0.249 0.241 363 521
200 8 60.60 59.52 0.303 0.298 301 539

TABLE III: Results for tasks with EST within the first 75% of the scheduling time frame.

• Scalability: Scalability is a major challenge in DCOPS
due to communication overhead among the robots. We
plan to work on improved variations of the max-sum
algorithm to reduce this overhead [1].

• Heterogeneity: The algorithm should be able to handle
various forms of heterogeneity, such as different motion
or sensing capabilities of the robots.

• Dynamic environments: The method should be able to
adapt to changes in the environment without having to
be completely re-run. For example, robots or tasks can
be added to or removed from the environment.

• Robustness: The algorithm should be robust to failures,
such as robot action failure and unreliable communica-
tion.

REFERENCES

[1] S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. Jen-
nings, “Decentralised coordination in robocup rescue,” The Computer
Journal, vol. 53, no. 9, pp. 1447–1461, 2010.

[2] P. Fazli, A. Davoodi, and A. K. Mackworth, “Multi-robot repeated
area coverage,” Autonomous Robots, vol. 34, no. 4, p. 251–276, 2013.

[3] J. Ji, P. Fazli, S. Liu, T. Pereira, D. Lu, J. Liu, M. Veloso, and X. Chen,
“Help me! sharing of instructions between remote and heterogeneous
robots,” in International Conference on Social Robotics (ICSR), 2016,
pp. 786–795.

[4] F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint opti-
mization problems and applications: A survey,” Journal of Artificial
Intelligence Research, vol. 61, pp. 623–698, 2018.

[5] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R.
Jennings, “Coalition formation with spatial and temporal constraints,”

in International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2010, pp. 1181–1188.

[6] M. C. Gombolay, R. Wilcox, and J. A. Shah, “Fast scheduling of multi-
robot teams with temporospatial constraints,” in Robotics: Science and
Systems (RSS), 2013, pp. 49–56.

[7] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, 2006.

[8] M. McIntire, E. Nunes, and M. Gini, “Iterated multi-robot auctions for
precedence-constrained task scheduling,” in International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2016, pp.
1078–1086.

[9] E. Nunes, M. McIntire, and M. Gini, “Decentralized allocation of tasks
with temporal and precedence constraints to a team of robots,” in IEEE
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 2016, pp. 197–202.

[10] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decentralised
coordination of low-power embedded devices using the max-sum
algorithm,” in International Conference on Autonomous Agents and
Multiagent systems (AAMAS), 2008, pp. 639–646.

[11] M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, and J. A.
Rodriguez-Aguilar, “Efficient inter-team task allocation in robocup
rescue,” in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2015, pp. 413–421.

[12] F. R. Kschischang, B. J. Frey, and H. . Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[13] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “Adopt: asyn-
chronous distributed constraint optimization with quality guarantees,”
Artificial Intelligence, vol. 161, no. 1, pp. 149–180, 2005.

[14] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[15] G. Melançon, I. Dutour, and M. Bousquet-Mélou, “Random generation
of directed acyclic graphs,” Electronic Notes in Discrete Mathematics,
vol. 10, pp. 202–207, 2001.

	INTRODUCTION
	BACKGROUND AND STATE OF THE ART
	Market-based Approaches
	DCOP-based Approaches

	PROBLEM STATEMENT
	PROPOSED APPROACH
	Precedence Graph
	Distributed Constraint Optimization Problem
	DCOP Representation: Factor Graph
	Solving DCOP: Max-Sum Algorithm
	Managing Schedules: Simple Temporal Networks

	Experiments and Results
	Experimental Setup
	Results

	CONCLUSION AND FUTURE WORK
	References

