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Abstract 
Video accessibility is crucial for blind and visually impaired 
individuals for education, employment, and entertainment 
purposes. However, professional video descriptions are 
costly and time-consuming. Volunteer-created video de-
scriptions could be a promising alternative, however, they 
can vary in quality and can be intimidating for novice de-
scribers. We developed a Human-in-the-Loop Machine 
Learning (HILML) approach to video description by au-
tomating video text generation and scene segmentation 
while allowing humans to edit the output. Our HILML sys-
tem was signifcantly faster and easier to use for frst-time 
video describers compared to a human-only control condi-
tion with no machine learning assistance. The quality of the 
video descriptions and understanding of the topic created 
by the HILML system compared to the human-only condi-
tion were rated as being signifcantly higher by blind and 
visually impaired users. 
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In this paper, we use the terms 
blind or visually impaired (BVI) 
users to refer to individuals 
who rely on audio descriptions, 
tactile graphics, or use mag-
nifcation to typically access 
images. 

Introduction 
The World Health Organization (WHO) estimates that roughly 
285 million people worldwide are visually impaired, and 39 
million people are blind [3]. Despite international guidelines 
and standards [19, 6], there is still a paucity of videos on 
the Internet that are made accessible through video de-
scription for blind or visually impaired (BVI) users. Video 
description can be defned as “narration added to the sound-
track to describe important visual details that cannot be un-
derstood from the main soundtrack alone” [2]. A signifcant 
bottleneck in video accessibility for BVI users is the time 
and cost to produce video descriptions professionally. In 
this paper, we turn to the use of Human-in-the-Loop Ma-
chine Learning (HILML) to facilitate easier video description 
for novice describers and to improve the quantity and qual-
ity of video accessibility for BVI users. We built a video de-
scription interface with automated scene segmentation, text 
generation of images, and text generation of text on screen 
using machine learning. The human is then able to edit the 
generated output, allowing human-machine collaboration to 
produce high quality video descriptions while keeping a low 
barrier to entry for volunteer describers. We evaluated this 
interface on novice describers and compared it to a control 
condition with no machine learning assistance (Experiment 
1). We then asked BVI users to rate the quality and clarity 
of the video descriptions produced by the two conditions 
(Experiment 2). 

Related Work 
Video Description Tools 
LiveDescribe was designed for real-time descriptions of 
live television broadcasts with two automated features to 
work with silent periods. Feedback from describers was 
positive but also refected the high cognitive workload of 
live description [4]. Villamizar et al. developed a proto-
type for an adaptive video enrichment system personal-

ized to BVI users based on decision trees [22], however, 
as stated by the authors, the prototype needs to be evalu-
ated with user studies to investigate the adaptive system 
further [22]. Gagnon et al. [9, 8] built a prototype software 
for professional describers that used computer vision to ex-
tract visual content from videos. They displayed detected 
features on an interactive timeline which allowed profes-
sional describers to have an overview of the frequency and 
duration of features in the video, as well as the silent ar-
eas. Kobayashi et al. created audio description synthesis 
by using external metadata of videos on an online platform 
[14, 15]. Kobayashi et al. [15] developed a describer script 
editor with a visual interface to edit the video description 
sentences. They tested it on one novice and one profes-
sional describer. Ratings by blind and visually impaired 
users showed signifcantly lower scores for the novice de-
scriber [15]. The novice describer estimated that it would 
take three times longer without the script editor to produce 
video descriptions, but no control condition was carried out. 

Machine Learning in Video Understanding 
Classical video description approaches combined sub-
ject, object, and verb (SVO) detection from visual entities 
with template based language models to generate sen-
tences [16]. However, the release of large datasets re-
vealed that these methods cannot cope with the diversity 
in unconstrained open domain videos and were replaced 
with deep learning. In particular, Convolutional Neural Net-
works (CNNs) [1] are the state of the art for modeling visual 
data recognition [1, 24, 26] and Long Short-Term Memory 
(LSTMs) [12] are now dominating the area of sequence 
modeling such as NLP [5, 10, 25]. CNN, Recurrent Neural 
Network (RNN), or LSTM are used in the encoding stage 
to learn visual features that are then used in the second 
stage for text generation (decoding stage). For decoding, 
different favours of RNNs are used, such as deep RNN, 



Figure 1: Close-up of the 
Describer User Interface and script 
editor of the HILML system 
displaying: 1) automated scene 
segmentation, 2) text generation 
for the description of images in the 
video, and 3) text generation for 
text that appears on the screen. 
This automated text can then be 
edited by the describer (the text 
shown here is the automated 
output with no human edits). 

Bi-directional RNN, LSTM, Gated Recurrent Units (GRU), 
Attention or Transformer [27]. The resulting description 
can be a single sentence or multiple sentences. Roem-
mele et. al used a RNN architecture to generate stories in a 
sequence-to-sequence manner [21]. Martin et. al proposed 
an event representation for neural-network-based story 
generation [17]. Fan et al. created a hierarchical model that 
automatically generates stories conditioning on the writing 
prompts [7]. Huang et. al introduced the visual storytelling 
task, in which the trained model takes a sequence of photos 
as input and generates a short story that narrates this photo 
sequence [13]. 

Human-in-the-Loop Machine Learning 
Human-in-the-Loop Machine Learning (HILML) has been 
defned as human and machine learning (ML) processes 
interacting to solve one or more of the following: 1) Making 
ML more accurate, 2) Getting ML to the desired accuracy 
faster, 3) Making humans more accurate, and 4) Making 
humans more effcient [18]. HILML is an important feld to 
both the HCI and ML communities and can create impor-
tant collaborations. In the feld of image and video clas-
sifcation, Wang et al. [28] used HILML to create a semi-
automatic method to segment foreground moving objects 
in surveillance videos. They combined human outlining of a 
small number of moving objects with a CNN to reach sim-
ilar levels of accuracy as a human with less manual work 
than human-only analysis [28]. Pirrung et al. [20] created 
a HILML image organization web application where hu-
mans can organize their images and the machine learns 
from these groupings. In return, the machine can reposi-
tion images or regroups them to refect its assessment of 
the human’s mental model, which may then be refned by 
the user. In this paper, we leverage both human and ma-
chine intelligence to create a HILML system to aid sighted 
humans create video descriptions for BVI users. 

System 
We built a system to assist novice human volunteers in pro-
ducing video descriptions using a HILML approach. Our 
framework uses publicly available APIs, such as Microsoft 
Azure Cognitive Services [23] and IBM Watson [29] for 
computer vision and language. These APIs provide ca-
pabilities for scene detection, generation of phrase-level 
captions on individual frames, face and emotion detection, 
text detection, speech synthesis, and sentiment analysis. 
We built a model based on this extracted knowledge to gen-
erate effective descriptions of video content. These descrip-
tions are minimal and mainly focus on major scene or con-
dition changes, primarily changes in foreground objects, 
people in the scene, and text. 

The following describes the workfow of the system: 
Input Data: Videos for which descriptions have been re-
quested are forwarded to the model for processing. 
Scene Segmentation and Key Frame Extraction: The 
video is segmented into a sequence of scenes of varying 
time spans. Key frames are sampled to maintain the appro-
priate granularity of the scene for generating the descrip-
tion. 
Generating Video Description: Sequences of key frames 
are processed by the model to generate descriptions that 
best explain the scene in the video. The description covers 
any text in the key frames, people with ID (to handle reap-
pearances), gender, emotion, hair color, age, objects, and 
environment. People are recognizable if they are known 
celebrities. 
Validating or Revising the Description: Through the de-
scriber interface (Figures 1 and 2), sighted users can view 
video scene segments, their associated descriptions, and 
can make their own edits and notes in the script editor. Vol-



Figure 3: Describers’ ratings of the 
HILML and Human-Only 
conditions. Describers showed 
(Top:) noticeable preference for the 
HILML system and (Bottom:) felt it 
was quicker to use. 

Figure 2: The Describer User Interface for the sighted volunteers in Experiment 1 across the Human-Only (Left Panel) and HILML (Right 
Panel) conditions. The video is played on the left-hand side and the edit/input interface is on the right. In the Human-Only condition, describers 
need to create their own scene segmentations and generate all of the descriptions from scratch. In the HILML condition, the scenes are 

Figure 4: Describers’ ratings of the 
helpfulness of the provided text 
generated by the HILML system. 
Most describers agreed or strongly 
agreed that it was helpful. 

automatically segmented for users. 

unteers improve this narration by revising, merging, or com-
pleting the machine-generated descriptions. Compared to 
free-form descriptions that volunteers create from scratch, 
the proposed process assists sighted volunteers to struc-
ture and complete the descriptions. Figure 1 shows the the 
scene segmentation, text generation for description of im-
ages in the video, and text generation for text that appears 
on the screen. 
Playing Video with Description: The video is played to 
the visually impaired or blind user with audio descriptions 
synchronized to the original video. Audio is generated using 
IBM Watson’s text-to-speech API. 

Experiment 1: Describing Videos 
Experiment 1 investigates the use of the HILML system for 
video description generation for novice describers. Par-
ticipants described videos in two conditions: one with the 
HILML system with machine learning assistance for text 
generation and scene segmentation, and one with no ma-
chine learning assistance (Figure 2). 

Experimental Design 
In Experiment 1, twenty two participants (11 male, 11 fe-
male), aged 18 to 34 (mean age of 24.0, SD of 4.45) took 
part in a within-subject design and will be referred to as the 
describers. All describers frst took a short tutorial to famil-
iarize themselves with the video description software. De-
scribers were then given two videos to describe, one with 
and one without the HILML system. In the HILML condi-
tion, automated text and scene division was provided which 
could then be edited by the describers if they wished. In the 
control condition, which we refer to as the ‘Human-Only’ 
condition, describers typed out all of their video descriptions 
from scratch in the user interface. Figure 2 show examples 
of both conditions in the user interface. Both videos were 
‘How-To’ cooking videos of around 2 minutes length each. 
‘How-to’ videos are requested by visually impaired users 
on YouDescribe. The ‘How-To’ video style requires a high 
degree of quality description which includes: 1) text that 
is on the screen to be described if it is present for greater 



Describer Quotes on HILML 
system from Experiment 1: 

“It was super helpful. It was a 
lot easier to describe what I 
was looking at just because it 
already had pre-written text. It 
helps get it started.” 

“I think that one was pretty 
much set and it again gave us 
all the details we needed and if 
we need to fx it we could so I 
think it made the process a lot 
easier and quicker.” 

“I feel like it gave me some type 
of guideline as to what I should 
put, and not too many details.” 

“More helpful part was that it 
was already dividing up into the 
different scenes because the 
fact that it was automatically 
dividing up meant that all I have 
to do is just create the script.” 

“It was helpful for starting it. But 
it wasn’t too helpful in being 
more descriptive. It would be a 
very simple description like ‘a 
bowl was present.’ ” 

“[The accuracy] was kind of 
neutral because I also needed 
to interpret what it was saying. 
Some of the text was helpful 
but the other things I deleted 
it completely and started from 
scratch.” 

than 1 or 2 seconds, and 2) the scene to be described ev-
ery time it changes. The describers were divided into two 
groups: Group 1 described Video 11 with the HILML system 
and Video 22 without the HILML system. Group 2 described 
Video 1 without the HILML system and Video 2 with the 
HILML system. The order of the conditions and group allo-
cations was alternated between participants. Both videos 
had music playing throughout with text on screen appear-
ing with instructions and ingredients. At the conclusion of 
each video description, describers were asked to fll out a 
questionnaire on their describing experience including an 
unweighted NASA-TLX survey [11] (a subjective workload 
assessment tool) and were given a short interview. 

Results and Discussion 
Questionnaire data: Questionnaire data shows that de-
scribers preferred the HILML system and felt that it was 
quicker than the Human-Only condition (Figure 3) even 
though both systems were generally easy to use for most 
participants. This is interesting as the accuracy of the pro-
vided text by the HILML system was reported as being 
somewhat accurate, with the mode response being of ‘neu-
tral’ accuracy. This suggests that even though the accu-
racy of the HILML system was not perfect, it was still helpful 
(Figure 4) than no machine learning assistance at all. 

Time Taken to Complete Video Descriptions: We performed 
a t-test on the mean time (in seconds) that describers spent 
describing a video across the HILML and Human-Only con-
ditions. Results showed that users described videos with 
the HILML condition (µ = 1285.41, σ = 659.51) signifcantly 
faster than the Human-Only condition (µ = 1825.45, σ = 
658.51) (t(21) = 2.83, p = 0.005, d = 0.60). These fnd-
ings correspond with the questionnaire data by describers 

1https://www.youtube.com/watch?v=cNj3aOTYdQQ 
2https://www.youtube.com/watch?v=nqXz8hhAYGo 

Human-Only HILML Wilcoxon Z p effect size 
Mental demand 
Physical demand 
Temporal demand 
Performance 
Effort 
Frustration 

64.1 (20.7) 
19.8 (20.5) 
40.5 (29.7) 
31.1 (22.3) 
60.7 (18.5) 
43.4 (27.3) 

43.4 (23.9) 
14.8 (17.6) 
28.0 (22.0) 
26.8 (27.8) 
45.7 (23.3) 
23.6 (22.9) 

-2.486572 
-0.813411 
-1.463076 
-0.179176 
-2.199999 
-2.548356 

0.011110 
0.427694 
0.148385 
0.866728 
0.026089 
0.008972 

0.530139 
0.173420 
0.311929 
0.038200 
0.469041 
0.543311 

Table 1: Mean (st. dev.) NASA-TLX values (0=low, 100=high) and 
results from Wilcoxon Signed-ranked test. Rows in bold indicate 
signifcant results. 

that the HILML system was quicker to use than the Human-
Only condition (Figure 3). 

Describer Workload : Results of the NASA-TLX responses 
(Table 1) showed that describers found the HILML system 
to be signifcantly less mentally demanding, require less 
effort, and be less frustrating. 

Interview Data: All describers were asked the following 
three interview questions: 1) ‘How helpful was the provided 
text?’, 2) ‘Does using the provided text make describing the 
videos easier?’, and 3) ‘Is there anything else you’d like to 
add about the systems you used to describe the videos?’. 
[Representative quotes are provided in the margin.] The 
two main features provided by the HILML system for de-
scribers was automatic text generation for video descrip-
tions and scene segmentation. Sixteen out of 22 describers 
commented on how these features helped provide guide-
lines for them as novices, particularly on the level of detail 
required in descriptions. However, four out of 22 describers 
felt that the descriptions were “vague” and “simple” (al-
though two of these describers still felt the HILML system 
did provide them with a starting point or a guideline). Inter-
view data was consistent with questionnaire data on the text 
generation’s neutral level of accuracy, yet the HILML was 
still helped the majority of novice describers. 



Rater Quotes from Exper-
iment 2 on HILML system 
and Human-Only Control 
Condition: 

“Good cooking advice, actually 
describes what TO do and not 
just what is going on. Would 
say excellent.” [HILML System] 

“This video is an example of 
the minimum info that should 
be included in all videos. It is 
not too overly descriptive with 
each step. It lays out what is 
happening and then reads the 
text for the ingredients.” [HILML 
System] 

“There weren’t any long pauses 
in the video and it felt as if the 
description was done more 
carefully and with precision to 
match the pace of the original 
video.”[HILML System] 

“Too specifed, too confusing 
to understand” [Human-Only 
condition] 

“The details were very vague 
and no text shown on the 
screen was even men-
tioned.” [Human-Only condition] 

“I believe that aligning an au-
dio track with the description 
is much more benefcial in or-
der to prevent any confusion.” 
[Human-Only condition] 

Experiment 2: Video Descriptions Rated By Blind 
or Visually Impaired Users 
Twelve BVI participants were asked to rate the videos cre-
ated by describers in Experiment 1 (akin to [15]). These 
participants will be referred to as raters. Methods reported 
by raters to access images were audio description (9 raters), 
magnifcation (2 raters), and tactile graphics (1 rater). 

Experimental Design 
All raters worked remotely and were each given half of the 
44 videos described (as each of the 22 describers had pro-
duced 2 videos). Six raters were given videos produced 
by the frst 11 describers and six raters were given videos 
described by the last 11 describers. Therefore, half of the 
videos provided to each rater were described using the 
HILML system and half were described by the Human-Only 
condition. The videos were split evenly into Video 1 and 
Video 2. The order of the videos provided to raters were 
randomized. Raters were not even aware that some videos 
had been described using the assistance of machine learn-
ing technology, they were simply told that the videos had 
been described by 11 different describers. Raters could 
play each video through and hear the video descriptions 
being read out by text-to-speech synthesis. After watching 
each video, raters were asked to rate the quality of descrip-
tion on a scale of 1 to 5 (‘Poor’ to ‘Excellent’), their under-
standing of the topic in the video, and any other comments. 

Results and Discussion 
Video Description Quality and Topic Understanding: Wilcoxon 
Signed-ranks tests showed that mean video description 
quality was rated signifcantly higher in videos created 
by the HILML system (µ = 3.9393, σ = 0.5276) than 
the Human-Only condition (µ = 3.4303, σ = 0.7328) 
(Z = 2.5897, p = 0.0068, r = 0.7476) and that mean un-
derstanding of video’s topic was rated signifcantly higher 

in videos created by the HILML system (µ = 4.1720, 
σ = 0.6650) than the Human-Only condition (µ = 3.8417, 
σ = 0.8026) (Z = 2.5001, p = 0.0117, r = 0.7217). 

Comments by Raters: The comments provided by the raters 
were extremely interesting [please see margin for represen-
tative quotes]. The level of detail provided in descriptions 
was very important to raters, with the HILML system pro-
viding more concise and succinct descriptions. Novice de-
scribers often provided too much detail in the Human-Only 
condition. Raters highlighted many cases in the Human-
Only condition where there was a lack of reading out text on 
screen. The HILML system automatically generates text on 
screen, guiding the novice describer in that respect. Correct 
scene segmentation and alignment of audio and video was 
also very important to BVI raters with the HILML system 
creating a more cohesive “fow” for raters, as opposed to a 
speed that was “rushed” in the Human-Only condition. 

Conclusion 
This work demonstrates that the HILML system 1) helps 
novice describers generate video descriptions for BVI users 
signifcantly faster and with increased ease, and 2) gener-
ates signifcantly higher quality video descriptions and un-
derstanding than human-only descriptions as rated by BVI 
users. This provides a hugely needed low barrier to entry 
method for online video descriptions in order to decrease 
the massive digital divide between BVI and sighted users. 
As part of future work, we are developing ‘on-demand de-
scriptions’ to allow BVI users to pause the video and ask 
questions using natural language. 
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